
GEO DESIGNE

SOURCE CONTROL PLAN
Sulzer Pumps Site
2800 NW Front Avenue
Portland, Oregon
DEQ ECSI No. 1235

For Sulzer Pumps (US) Inc. August 4, 2006

GeoDesign Project: SulzerPump-1-09

Oregon Department of Environmental Quality Northwest Region 2020 SW Fourth Avenue, Suite 400 Portland, Oregon 97201

Attention: Mr. Mark Pugh

Source Control Plan
Sulzer Pumps Facility
2800 NW Front Avenue
Portland, Oregon
GeoDesign Project: SulzerPump-1-09
DEQ ECSI No. 1235

GeoDesign, Inc. is pleased to submit this Source Control Plan for the Sulzer Pumps facility located at 2800 NW Front Avenue in Portland, Oregon. This plan is designed to address the impacted catch basins and stormwater system that discharges to the Willamette River at the Sulzer Pumps site.

If you have questions concerning this submittal, please call.

Sincerely,

GeoDesign, Inc.

Robert E. Belding, R.G.

Principal Geologist

cc: Ms. Kati Babinec, Sulzer Pumps (US) Inc. (three copies)

SCN:REB:kt:

Attachments

Two copies submitted

Document ID: SulzerPump-1-09-080406-envr-SCP-rev.doc

© 2006 GeoDesign, Inc. All rights reserved.

<u>TABL</u>	E OF C	ONTENTS	PAGE NO.
1.0	INTR	ODUCTION AND PURPOSE	1
2.0	BACK	KGROUND	1
3.0	CATO	CH BASINS AND STORM DRAIN SYSTEM LAYOUT	2
4.0	REME	EDIAL SOURCE CONTROL	3
	4.1	Initial Cleanup	3
	4.2	Periodic Cleaning and Monitoring Requirements	4
FIGUI	RES		
	Vicin	ity Map	Figure 1
	Site F	Plan	Figure 2
TABL	ES		
	May	7, 2006 Stormwater Sampling Analytical Results	Table 1
	Sour	ce Control Plan Analyses	Table 2
APPE	NDIX		
	Sterli	ing Technologies, LLC Report	
ACRO	NYMS		

1.0 INTRODUCTION AND PURPOSE

This SCP is submitted in response to comments to a draft SCP by DEQ for the Sulzer Pumps (US) Inc. (Sulzer) facility located at 2800 NW Front Avenue in Portland, Oregon. This SCP presents a summary of the remedial actions for the COI detected in catch basins and storm drain systems at the site, as well as recommendations for periodic maintenance at the site. This SCP has been completed by GeoDesign on behalf of Sulzer under guidance of the Voluntary Cleanup Program with the DEQ. The DEQ ECSI identification number for this site is 1235. For your reference, definitions of all acronyms used are attached at the end of this document.

2.0 BACKGROUND

In August 2002, Sulzer entered into a voluntary agreement with DEQ to conduct an XPA of the site. The primary purpose of the XPA was to identify potential contaminant sources on the upland portion of the site that may have impacted Willamette River sediments and surface water or have the potential to impact Willamette River sediments or surface water in the future. In May 2004, GeoDesign submitted the results of the XPA in a report to the DEQ. The results of the XPA indicated that media impacted in the upland portion of the site included subsurface soil, groundwater, and catch basin sediments.

In November 2004, GeoDesign submitted a technical memorandum to DEQ that included a CSM, an evaluation of beneficial land and water uses, and the results of screening contaminant concentrations against risk-based human health and ecological criteria. In a letter from DEQ to Sulzer dated December 23, 2004, DEQ requested re-screening the contaminants using values recently revised by DEQ. Contaminants were compared to revised screening criteria and presented under the title *Source Control Evaluation*. The CSM developed for the project site demonstrated that particulates on paved surfaces and catch basin sediments are the only potential source that may directly impact river sediment and that stormwater and groundwater discharges are the only potential sources that may directly impact river water. COIs exceeding one or more screening levels include metals and PAHs as described in the SCE.

Based on information provided by Sulzer personnel, operations at the sand blasting building were moved in March 2004 to a new sand blasting and painting area in an addition to the east end of the NE Operations Office building. The new area was constructed so that sand blast grit and debris is contained in an enclosed space, thereby minimizing the potential for future impacts to stormwater.

In August 2005, GeoDesign submitted a draft SCE and SCP for the site and DEQ provided comments on September 8, 2005. Based on the comments provided by DEQ, GeoDesign incorporated updated screening levels for COIs at the facility for the SCE. GeoDesign incorporated comments made for the SCP, and Sterling Technologies, LLC (Sterling) completed several field activities at the site between September 2005 and June 2006, including site sweeping, identifying storm drain lines, sampling catch basin sediments, cleaning catch basins, jetting storm drain lines, disposing of remedial wastes, and sampling storm water during a rain event. The samples obtained by Sterling were submitted to an analytical laboratory for chemical

1

testing. The analytical results from these activities were screened using screening levels and methods from DEQ's December 2005 Final Portland Harbor *Joint Source Control Strategy* document.

3.0 CATCH BASINS AND STORM DRAIN SYSTEM LAYOUT

Based on the site SWPCP prepared by Bergeson Boese & Associates, site stormwater is collected by catch basins in six drainage areas, which lead to seven point source discharges (Outfalls A through E and numbers 6 and 7). Three non-point discharge drainage areas are also identified in the SWPCP: two areas are located adjacent to the Willamette River in the northern portion of the site and one is located along NW Front Avenue and drains onto the adjacent road. Based on our review of the SWPCP, the site as-built drawings provided by Sulzer, our site reconnaissance, the December 2005 catch basin clean out and sampling activities, the April 2006 storm drain survey, and the May 2006 geophysical survey completed by Sterling, the system is divided into different drainage basins (A, B, C, D, E, F) and a new storm system in the Dolan area that discharges to the City of Portland storm system. The layout of the drainage basins is described as follows.

Drainage basin A includes catch basins CB-M4, CB-M5, CB-7, CB-8, CB-9, and CB-10 that are connected to a City of Portland storm drain line on the northwest portion of the site. Drainage basin A discharges via Outfall A to a City of Portland stormwater drain line located at the western portion of the site along NW Front Avenue.

Drainage basin B includes catch basins CB-13, CB-M6, CB-12, CB-M8, CB-11, CB-2 and new catch basins CB-44 CB-45, and CB-46, which discharge to a vault at storm drain SD-2, which then routes into the Outfall B pipe. Catch basins CB-44, CB-45, and CB-46 are located in a roadway where the former warehouse and office building were located. The Outfall B pipe also drains non-contact cooling water from the substation 2 area. This stormwater discharges to the Willamette River at Outfall B.

Drainage basin C includes catch basins CB-3, CB-4, CB-M3, and CB-49 and discharges to the Willamette River via Outfall C. Catch basins CB-41, CB-42, and CB-43 are located within the Dolan building and are no longer in use. Potential surface discharge points for these drains were capped and sealed by Sterling.

Drainage basin D includes catch basin CB-5 and discharges to Outfall D. Catch basins CB-30 through CB-40 are new catch basins located within the Dolan area and flow to a common storm vault west of CB-5. The stormwater is then pumped to the City of Portland stormwater system.

Drainage basin E includes catch basins CB-14 and CB-15 and discharges to Outfall E.

Drainage basin F includes catch basins CB-16 and CB-17, for which no outfall was located, potentially buried along the seawall. Catch basin CB-1 is connected to a 4- to 6-inch-diameter, metal pipe described as Outfall 7, which leads to the Willamette River; however, this pipe runs in an uphill direction to the discharge point and, therefore, does not flow. Catch basin CB-6 located in the non-point source area adjacent to the Willamette River flows to Outfall 6. Catch basins CB-M1, CB-M2, and CB-47 do not flow and are likely old roof drains. A geophysical survey was

completed for the cleanout activities in this area, and dry wells and piping to outfalls was not observed. It is our understanding that catch basins CB-M1, CB-M2, CB-47, CB-16, and CB-17 will be abandoned during the redevelopment of the Dolan area. The drainage basins, catch basin locations, and approximate locations of storm drain lines are shown on Figure 2.

4.0 REMEDIAL SOURCE CONTROL

The cleanup of the catch basins and storm drain system was two-fold and included an initial sweeping of areas at the site, catch basin clean out, and storm line jetting.

4.1 INITIAL CLEANUP

Sterling completed various tasks related to the cleanup of the site. These tasks are summarized in the attached Sterling report entitled *Sulzer Pumps (US), Inc., Source Control Plan Remediation, Final Report,* dated July 26, 2006. Sterling conducted catch basin sediment sampling on October 31, 2005. Thirty-three catch basin sediment samples were composited into six samples for characterization analysis. The catch basin sediment samples were submitted to North Creek Analytical of Beaverton, Oregon, for analysis of diesel- and heavy oil-range hydrocarbons using Method NWTPH-Dx, TCLP metals using EPA Methods 1311/6000/7000, and PAHs using EPA Method 8270M-SIM. Results are provided in the Sterling report. Based on the results of the analyses, the concentrations of diesel- and heavy oil-range hydrocarbons and PAHs in the composite sediment samples were generally consistent with the previous catch basin sediment screening results.

All accessible ground surfaces were swept of particulates and collected at the site on February 20, 2006 by MRP Services using street sweeping equipment. Catch basins were also cleaned out and the storm drain lines jetted with water. Water, sediment, and sludge from the catch basins and storm lines were collected using a vacuum truck, and the debris was pumped into a large storage tank. The contents of the tank were allowed to settle so that liquid and solid could be separately disposed. The solids were disposed at a Waste Management facility under Permit #9653 provided in the attached Sterling report.

Sterling completed stormwater sampling during an EPA defined rain event on May 7, 2006. Stormwater samples were collected from either outfalls or the last catch basin in the drainage prior to the outfall when the outfalls were not accessible. Samples included CB-1, CB-5, CB-6, SD-2, Outfall C, CB-17, and CB-15. The tank storing water from the storm line jetting was also sampled for characterization. Samples were submitted to North Creek Analytical for analysis of diesel- and heavy oil-range hydrocarbons using Method NWTPH-Dx, oil and grease using EPA Method 1664/1664A, TSS using EPA Method 160.2, total metals using EPA Method 200 Series, and PAHs using EPA Method 8270M-SIM. In addition, the water sample collected from the storage tank was submitted for analysis of BTEX using EPA Method 8021. Field measurements included temperature and pH. The waste water from the catch basin and storm drain line cleaning was disposed by Oil Re-Refining Company on June 27, 2006. The bill of lading is included in the attached Sterling report.

The results of the stormwater sampling indicated that phenanthrene was detected at concentrations of 0.221 and $0.201 \mu g/L$ in samples CB-1 and CB-6, respectively. No other PAHs

were detected above method reporting limits. The concentrations of zinc, copper, and lead were slightly elevated above the ecological screening levels. The concentration of zinc may have been elevated due to new zinc siding and roofing recently replaced on some of the site buildings. Table 1 provides the stormwater sampling results. The attached Sterling report includes the laboratory reports.

4.2 PERIODIC CLEANING AND MONITORING REQUIREMENTS

The site will require periodic maintenance, including cleaning catch basins and storm drain lines, as well as stormwater monitoring. The following sections provide the schedule and methods for completing these tasks.

4.2.1 Catch Basins and Storm Drain Lines

The catch basins should be cleaned of debris and sludge semi-annually at the site. Catch basins should be equipped with sorbent pads to aid in collection of petroleum hydrocarbons in general parking lot run-off. The sorbent pads will be replaced semi-annually in conjunction with catch basin cleaning. Debris, including sediment and sludge, will be cleaned from the catch basins and storm drain lines on the site. A cleaning service contractor with equipment to clean catch basins and storm drains will be contracted. Solids and liquids will be flushed back toward the catch basins. Materials cleaned from the storm drain pipes and rinse water from the flushing operations will be collected, segregated, and sampled for characterization and disposal. The waste solids will be separated from the liquids and stored in 55-gallon drums on site pending disposal characterization. Material collected from the catch basins, including spent sorbent pads, shall be disposed at a licensed disposal facility.

Composite samples will be collected from the catch basin material storage containers. Solids characterization sampling will include the following analyses:

- TCLP for chromium, copper, lead, and zinc using EPA Method 6010
- PAHs using EPA Method 8270M-SIM
- PCBs using EPA Method 8082

The waste liquids will be stored pending disposal characterization. Liquids from the flushing operations will be sampled from the storage containers for disposal characterization. Characterization sampling will include the following analyses:

- pH using EPA Method 150.1/9040A
- TSS using EPA Method 160.2
- PAHs using EPA Method 8270-SIM
- Total metals (including chromium, copper, lead, and zinc) using EPA Method 6010
- Diesel- and heavy oil-range petroleum hydrocarbons using Method NWTPH-Dx

4.2.2 Stormwater Sampling

A quarterly stormwater sampling program for the storm drain outfalls will be implemented. The first sampling event should be conducted as soon as reasonably possible following each catch basin and storm drain line cleanout event. Outfalls to be sampled include all outfalls that are

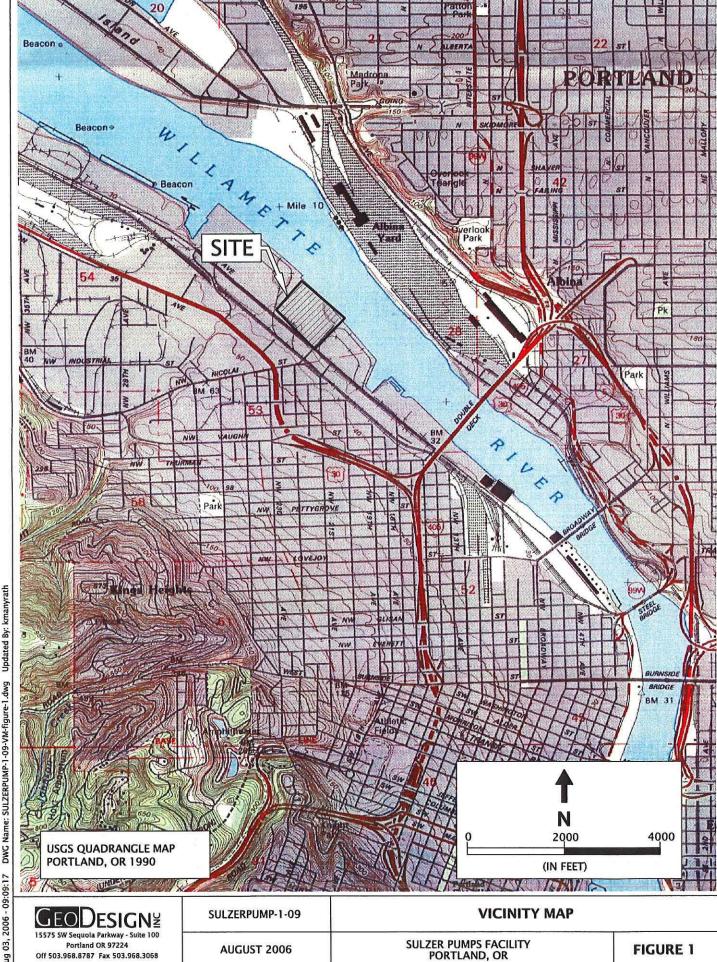
draining water, including (but not limited to) Outfalls B, C, D, E, 6, and 7. When outfalls are not safely accessible, the last catch basin prior to the outfall may be sampled instead. Characterization sampling will include the following analyses:

- pH using EPA Method 150.1/9040A
- TSS using EPA Method 160.2
- Diesel- and heavy oil-range petroleum hydrocarbons using Method NWTPH-Dx
- Total oil and grease using EPA Method 1664
- Total metals (including chromium, copper, lead, and zinc) using EPA Method 200.8
- PAHs using EPA Method 8270-SIM
- PCBs using UPA Method 8082

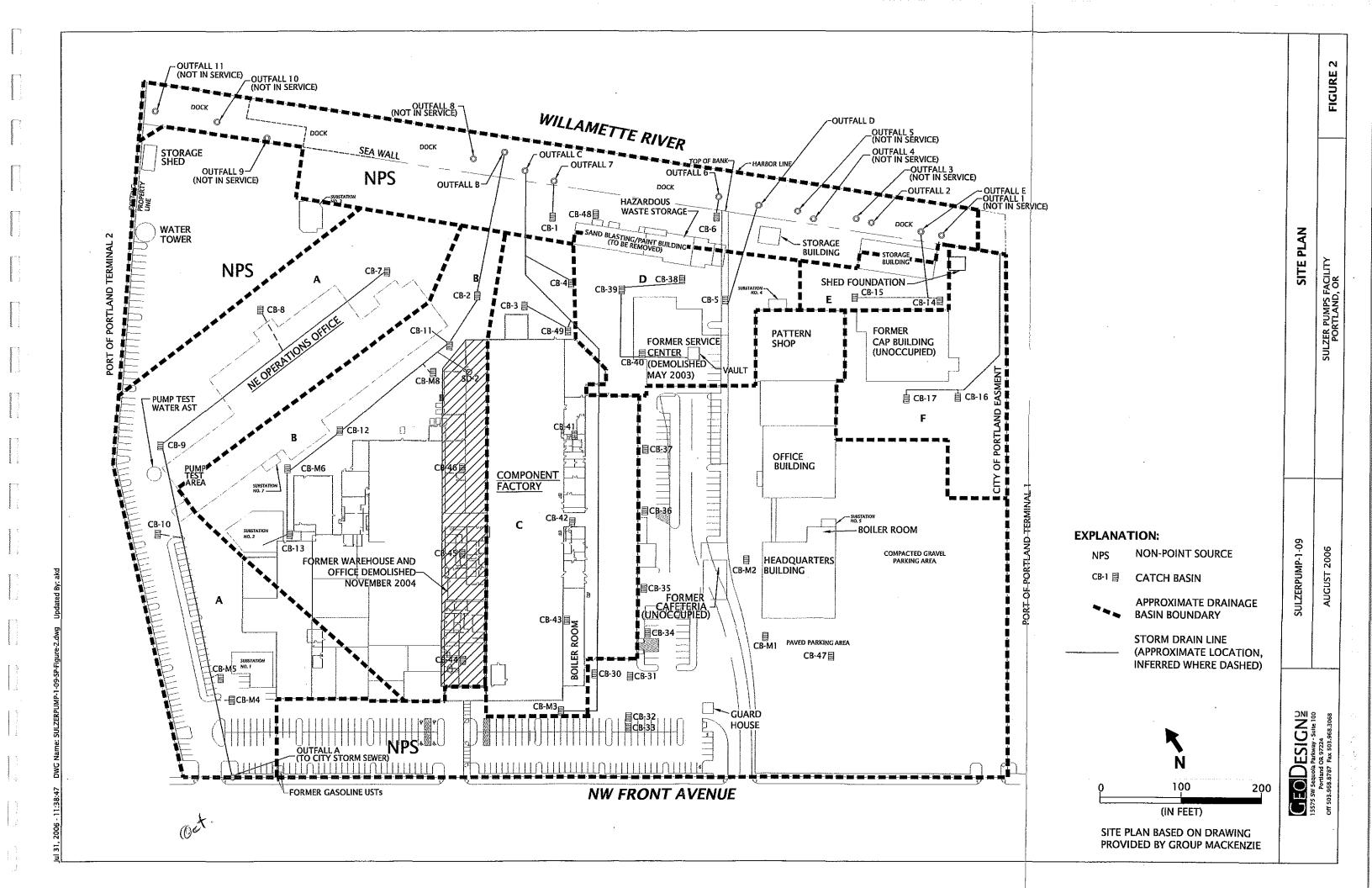
Table 2 provides the methods and appropriate number of samples to be collected from each outfall. Quarterly stormwater sampling results shall be summarized in tables and screened against applicable source control screening criteria. The summaries shall be forwarded to DEQ for review.

Please call if you have any questions regarding this submittal.

Sincerely,


GeoDesign, Inc.

Stephen C. Nelson Project Manager


Robert E. Belding, R

Principal Geologist(

Figures

Updated By: kmanyrath DWG Name: SULZERPUMP-1-09-VM-figure-1.dwg 2006 - 09:09:17

Tables

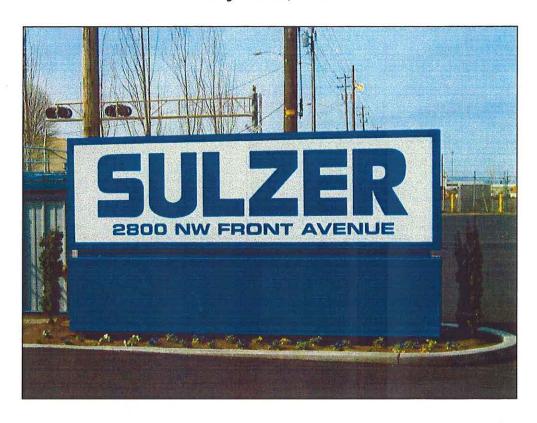
TABLE 1 May 7, 2006 Stormwater Sampling Analytical Results Sulzer Pumps Facility 2800 NW Front Avenue Portland, Oregon

					- 6.1		Outfall 7	Human Health Screening Levels			T_ , , , _
Outfall	Outfall B	Outfall C	Outfall D	Outfall E	Outfall F	Outfall 6		Fish	†	king Water	Ecological Receptor Screening Level ³
Sample Collection Location	SD-2	Outfall C	CB-5	CB-15	CB-17	CB-6	CB-1	Consumption ²	MCL	Tap Water PRG	3Creening Level
Total Metals by EPA Method 200 Series (mg/L)											
Chromium	0.00207	ND<0.0010	0.00141	0.00471	ND<0.0010	0.00185	0.00817		0.100		
Copper	0.0339	0.0282	0.0332	0.0707	ND<0.0020	0.013	0.0184		1.3	1.5	0.0027
Lead	0.00226	0.0022	0.002	0.00702	ND<0.0010	0.00593	0.0082	***	0.015		0.00054
Zinc	0.314	0.329	0.693	0.279	0.0119	0.128	0.239	26	5.0	11	0.036
pH (field measurement)	6.84	5.4	6.32	6.55	6.62	5.70	6.68				
TSS by EPA Method 160.2 (mg/L)	20	ND<10.0	ND<10.0	42	ND<10.0	12.0	37.0				
Oil and Grease by EPA Method 1664/1664A	ND<4.76	ND<4.85	ND<4.76	ND<4.76	ND<4.81	ND<4.76	ND<4.76				
PAHs by EPA Method 8270M-SIM (µg/L)											
Acenaphthene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	990	0.20	370	520
Acenaphthylene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980		0.20		
Anthracene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	40,000	0.20	1,800	0.73
Benz(a)anthracene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	. 0.092	0.027
Benzo(a)pyrene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	0.0092	0.014
Benzo(b)fluoranthene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	0.092	
Benzo(g,h,i)perylene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980		0.20		
Benzo(k)fluoranthene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	0.92	
Chrysene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	9.2	
Dibenz(a,h)anthracene	ND<0.192	ND<0.190	ND<0.190	ND<0.0196	ND<0.194	ND<0.192	ND<0.196	0.018	0.20	0.0092	
Fluoranthene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.147	140	0.20	1,500	
Fluorene	ND<0.192	ND<0.0952	ND<0.143	ND<0.196	ND<0.0971	ND<0.0962	ND<0.0980	5,300	0.20	240	3.9
Indeno(1,2,3-cd)pyrene	ND<0.0962	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	0.018	0.20	0.092	
Naphthalene	ND<0.192	ND<0.0952	ND<0.190	ND<0.147	ND<0.0971	ND<0.144	ND<0.0980		0.20	6.2	620
Phenanthrene	ND<0.144	ND<0.0952	ND<0.0952	ND<0.147	ND<0.0971	0.201	0.221		0.20		
Pyrene	ND<0.0963	ND<0.0952	ND<0.0952	ND<0.0980	ND<0.0971	ND<0.0962	ND<0.0980	4,000	0.20	180	

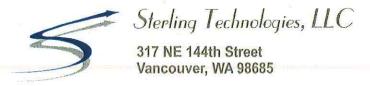
Notas:

- 1. Stormwater sampling conducted by Sterling Technologies, LLC on the May 7, 2006 EPA defined rain event.
- 2. DEQ's 2004 AWQC (organism only)
- 3. Per the Portland Harbor Joint Source Control Strategy, the value used is in order of availability: EPA's 2004 National Recommended Water Quailty Criteria (chronic); DEQ's 2004 AWQC (chronic); and Oak Ridge National Laboratory's Tier II Secondary Chronic Values.
- --: not analyzed/applicable
- ND: not detected at a concentration greater than the method reporting limit

TABLE 2 Source Control Plan Analyses Sulzer Pumps Facility 2800 NW Front Avenue Portland, Oregon


Analytical Methods			asin and e Cleanout	Outfall B	Outfall C	Outfall D	Outfall E	Outfall 6	Outfall 7
and Detection Limits		Composite Sediment	Cleanout Water	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater
Number of Proposed Samples		3	1	1	_ 1	1]	1	1
pH by EPA Method 150.1/9040	A	NA	NA	0-14	0-14	0-14	0-14	0-14	0-14
TSS by EPA Method 160.2		NA	NA	10 mg/L					
	Chromium	. NA	NA	1.0 µg/L	1.0 µg/L	1.0 μg/L	1.0 μg/L	1.0 μg/L	1.0 μg/L
Total Metals	Copper	, NA	NA	2.0 μg/L	2.0 µg/L	2.0 μg/L	2.0 μg/L	2.0 μg/L	2.0 μg/L
by EPA Method 200.8	Lead	NA	NA	1.0 μg/L	1.0 µg/L	1.0 μg/L	1.0 μg/L	1.0 µg/L	1.0 μg/L
	Zinc	NA	NA	5.0 μg/L	5.0 μg/L	5.0 µg/L	5.0 μg/L	5.0 µg/L	5.0 μg/L
	Chromium	NA	1.0 μg/L	NA	NA	NA	NA .	NA	NA
Total Metals	Copper	NA	2.0 μg/L	NA	NA	NA	NA	NA	NA
by EPA Method 6020	Lead	,NA	1.0 μg/L	NA	NA	NA	NA	NA	NA
	Zinc	NA	5.0 µg/L	NA	NA	NA	NA _	NA	NA
PAHs by EPA Method 8270M-SI	М	26.8 µg/kg	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L	0.1 - 0.2 μg/L
Diesel- and Heavy Oil-Range Petroleum Hydrocarbons	Diesel Range	NA	250 µg/L	250 µg/L	250 μg/L	250 μg/L	250 μg/L	250 μg/L	250 µg/L
by Method NWTPH-Dx	Heavy Oil Range	NA	500 μg/L	500 μ/L					
 Total Oil and Grease	Oil and Grease	NA	NA	5.0 mg/L					
by EPA Method 1664	Oil and Grease (non-polar)	NA	NA	5.0 mg/L					
by 2177 (decired 100)	Oil and Grease (polar)	NA	NA NA	5.0 mg/L					
PCBs by EPA Method 8082		33 - 67 μg/kg	0.5 μg/L	0.5 μg/L	0.5 µg/L	0.5 μg/L	0.5 μg/L	0.5 μg/L	0.5 μg/L
	Chromium	0.1 mg/L	NA	NA	NA	NA	NA	NA	NA
TCLP	Copper	0.1 mg/L	NA	NA	NA	NA	NA	NA	NA
by EPA Method 6010	Lead	0.1 mg/L	NA	NA	NA	NA	NA	NA	NA
	Zinc	0.2 mg/L	NA	NA	. NA	NA	NA	NA	NA

Appendix


Sulzer Pumps (US), Inc. Source Control Plan Remediation

Final Report

July 26th, 2006

Prepared by:

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	PROJECT OVERVIEW	2
3.0	REMEDIATION ACTIVITIES	2
3.1	SITE SURVEYS CATCH BASIN SAMPLING SITE SWEEPING CATCH BASIN CLEANING AND JETTING STORM WATER SAMPLING WATER DISPOSAL	2
3.2	CATCH BASIN SAMPLING	
3.3	SITE SWEEPING	
3.4	CATCH BASIN CLEANING AND JETTING	
3.5	STORM WATER SAMPLING	
3.6	WATER DISPOSAL	4
APPEN	NDIX A – PHOTOS	7
APPEN	NDIX B -DATA SUMMARY TABLES	13
APPEN	NDIX C - WASTE DISPOSAL DOCUMENTATION	38
APPEN	NDIX D –LAB DATA	39

Sulzer Pumps (US), Inc. Source Control Plan Remediation July 26th, 2006

1.0 Introduction

Sterling Technologies, LLC (Sterling) participated in a multi-phased project to assist Sulzer Pumps (US) Inc. (Sulzer) in their efforts to comply with the Source Control Plan (SCP) document prepared by GeoDesign Inc. and submitted to DEQ on August 1, 2005. The purpose of the SCP was to identify remediation steps to reduce contaminants found in the catch basins and storm drain systems at the Sulzer Pumps facility located at 2800 NW Front Avenue in Portland, Oregon.

2.0 Project Overview

To comply with the remediation efforts of the SCP, Sterling found it necessary to conduct additional activities including on-site surveys, storm drain mapping, and drawing reviews. These efforts were performed to further delineate the layout of the storm drain system and the exact locations of the catch basins. Sterling conducted the catch basins solids sampling and the storm water sampling in addition to coordinating the cleanup efforts as described in the SCP. These cleanup efforts included catch basin cleaning, storm drainage line jetting, waste disposal of residuals and liquids, and site sweepings as part of the project scope.

3.0 Remediation Activities

3.1 Site Surveys

During September 2005, Sterling staff conducted an on-site survey of the Sulzer Pump industrial site. The purpose of the survey was to locate and determine the accessibility of all the storm water catch basins described in the SCP document. During this survey it was found that several new catch basins had been installed and were not identified on the drawings supplied by Geodesign. Sterling also found other older catch basins and dry wells that were not included in the drawings or in the SCP. Sterling noted the additional basins on field drawing and included these catch basins in the sampling event for catch basin debris.

Sterling also conducted a survey of the storm drains and other discharge pipes under the pier during the month of April 2006. During this survey Sterling staff tried to verify the storm water outfalls under the pier and to determine if they were accessible for sampling. The catwalk structure under the pier was deemed unsafe in parts and many of the individual drains were not accessible from the catwalks or from the shore. Several of the drains are elevated at least 20 to 30 feet above the shore and extend at least 10 to 20 feet out over the river. Other larger storm drain outfalls are large pipes that extend down the shoreline and into the river.

For outfalls that are not accessible under the pier, a catch basin in the drainage area was sampled during the storm water event.

Sterling worked with an underground utilities location contractor (Geopotential) on May 4, 2006 to further identify the locations of storm drainage lines and outfalls. Geopotential location services were able to insert a metal snake into several of the drain lines and apply a signal to locate the direction of several of the storm drainage lines.

These survey efforts clarified many questions regarding the storm drainage system layout. Sterling provided Geodesign with an updated field drawing to be included with the final documentation submittal for DEQ.

3.2 Catch Basin Sampling

On October 31, 2005 Sterling conducted sampling of the storm water catch basins. The intent of the environmental sampling was to collect sediment in the bottom of the catch basins. Thirty-four catch basins were identified and accessible for sampling. Two of these basins, CB-13 and CB-14, were inaccessible during the site visit. The thirty-three catch basin samples were combined into a composite of six samples. The composites were grouped by catch basin located in a drainage basin area into the one sample. The following table provides more detail and a description of the composite sampling. Sediment samples were collected from each catch basin and placed into a large mixing container. These sediment samples were mixed thoroughly to create a homogeneous sample from which a sub sample was removed and collected for lab analysis. The largest of the catch basins, CB-5, was a large 4 foot by 4 foot basin. A forklift was used to remove the grating, and sediment was collected and sent to the lab as a discrete sample.

The samples were sent to North Creek Analytical on November 1, 2005 for lab analysis to profile the wastes for landfill disposal. The samples were analyzed for hydrocarbons, TCLP metals, and Polynuclear Aromatic Hydrocarbons (PAHs). See Appendix B for Summary Tables and Appendix C for Profile Information and Appendix D for Lab Data Reports.

3.3 Site Sweeping

During the week of February 20, 2006, MRP Services conducted a thorough vacuum sweeping of all accessible surfaces on the site through their contractor, Cantel Sweeping. All debris gathered from the sweeping was collected and combined with the solids from the catch basin cleaning and disposed of under the Waste Management approved profile (Permit #9653).

3.4 Catch Basin Cleaning and Jetting

Also during the week of February 20, 2006, MRP Services performed a thorough cleaning of each catch basin and storm drain using a vacuum truck. The debris and water gathered during the cleaning was collected into a large storage vat. The water was separated from the solids and is waiting for laboratory analysis for waste characterization.

The solids were sent to Hillsboro municipal landfill under an approved waste profile based on the catch basin sampling results. The waste profile permit (Permit #9653) is attached in Appendix C. Photos of the activity are included in Appendix A (Photo Appendix).

In addition to the catch basin cleaning, MRP services jetted each storm drain pipe that was accessible. Some drain pipes could not be jetted due to blockages, breaks in the lines or oil separator fittings. The water and any debris from the jetting was collected and combined with the other waste streams on site.

3.5 Storm Water Sampling

Sterling staff collected storm water samples during the EPA defined rain event on May 7, 2006. Eight samples were collected and sent to North Creek Analytical Laboratory for pH, Total Suspended Solids, Metals, Oil and Grease, NWTHP-DX, and PAH's by 8270 SIM. Of the eight samples collected, five samples were collected from actual catch basins, one sample was collected from the large new storm drain vault located in the center alley way, one sample was collected from Outfall C located under the pier, and one sample was collected from the water stored on-site from the catch basin cleanout. Sterling staff also performed a visual inspection of the outfalls under the pier to determine which outfalls were still capable of discharging runoff. From our observations, it appears that the only functioning outfalls that discharge to the river are Outfalls B, C, D, E, CB-6 and Outfall 1. All other drainage pipes appeared to be dry during this rain event.

The samples were sent to North Creek Analytical on May 8, 2006 for lab analysis to profile the storm water runoff. See Appendix B for Summary Tables and Field Log Sheet.

3.6 Water Disposal

On June 27, 2006 Oil Re-Refining company (ORRCO) representatives were on site to remove the water from the catch basin cleaning and jetting that remained in the large storage tank. The water was collected in a vacuum tank truck, the storage tank was rinsed and the rinse water was collected and removed from the site. The water was taken to an ORRCO facility for processing, documentation of which has been included in Appendix C. Approximately 640 gallons of water were pumped from the storage tank, screened for a flash point test (>200F) and was accepted into the Fuel Processors ORRCO Portland facility as rinse water/oil under Bill of Lading #164406 on June 27th, 2006.

STATEMENT OF LIMITATIONS.

The services described in this report were performed with generally accepted professional consulting principles and practices. No other warranty, express or implied is made. These services were performed in accordance with an agreement made with the client, and are solely for the use and information of the client. Any reliance on this report by third parties is inherently at their own risk.

This technical service is not a comprehensive investigation, and was limited to phone consultation and personal visits with the available company personnel and with the data provided by these staff

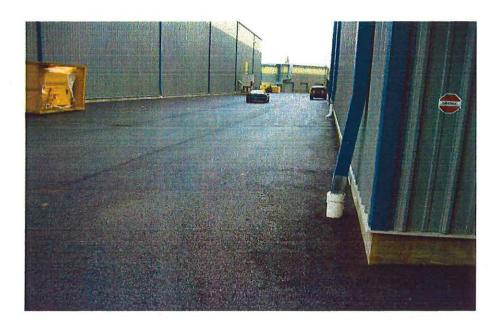
members and their regulating agency and field work conducted by Sterling Staff and their subcontractors.

Because this report is limited in nature, Sterling Technologies cannot accept responsibility for undisclosed conditions or conditions arising after the technical evaluation described in this report was conducted, the accuracy of the information provided by others nor the use of segregated portions of this report.

Appendix A - Photos

Older style catch basin located in Outfall B drainage area.

Catch Basin CB-5, large basin located in Dolan's loading area, flows to Outfall D.



Newer drains in the Dolan Designs loading area that flow to a common vault that is pumped to the city storm water system.

Catch basin CB-3 is a large catch basin located near the old furnace. This basin combines with Outfall C and flows to the river.

CB-44, 45 and 46 are new catch basins between the buildings that flow to a vault with large filters. After the filters the flow is combined with Outfall B and flows to the river.

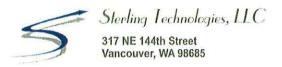
CB-7 is in the parking area of the NE Operations Office. CB-7, CB-8, CB-9, and CB-10 flow to Outfall A which combines with the city storm water system.

CB-1 is connected to Outfall 7; however there is no flow due to the angle of the pipe leading to the outfall.

CB-6 is the only catch basin flowing to Outfall 6.

MRP Services staff cleaning and jetting a catch basin near the guard shack.

The catch basins were vacuumed and the debris collected.



The basins were also washed down. The solids and the water were collected and later disposed.

The storm drains on site were also cleaned.

Appendix B – Data Summary Tables

Composite Summary Table Catch Basin Solids

Composite ID	Catch Basins	Notes
Composite #1	CB-M3, CB-30, CB-31,CB-32, CB-33	CB30-33 not on site map CB-M3 Gravel no sediment CB-30 Hard Dark Brown Deposits
Composite #2	CB-M1, CB-M2, CB-6, CB-34, CB-35, CB-36, CB-37, CB-38, CB-39	CB-M1 Very deep and dark sediment CB-6 No deposit looks recently cleaned CB-34-39 New CB's very light sediment mostly gravel
Composite #3	CB-3, CB-5, CB-40	CB-40 is new gravel only replaces DW-1
Composite #4	CB-M6, CB-M8, CB-11, CB-12, CB-13	Very little sediment in these CB's. Most are covered with cloth. CB-13 very little sediment, clear water, could not get open.
Composite #5	CB-7, CB-8, CB-9, CB-10, CB-M4, CB-M5	
Composite #6	CB-14, CB-15, CB-16, CB-17	All cloth covered. Small amount of sediment. CB-14 unable to open.
CB-SB-5		Large 4X4 Basin Stand alone sample

Data Summary Catch Basin Solids

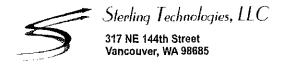
Diesel and Heavy Range Hydrocarbons by NWTPH-Dx

Sample ID	Diesel Range mg/kg	Heavy Oil Range mg/kg
Composite #1	<491	2,190
Composite #2	<498	2,430
Composite #3	2,390	6,180
Composite #4	<1,230	3,970
Composite #5	<1,260	2,570
Composite #6	1,750	4,390
CB-SB-5	2,020	5,050

Sample Description: Co	omposite #1	
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L
Arsenic	<1.0	5
Barium	<2.0	100
Cadmium	<0.20	1
Chromium	<0.20	5
Copper	0.387	NA
Lead	0.570	5
Selenium	<1.0	. 1
Silver	<0.20	5
Zinc	3.77	NA
Mercury	<0.0002	0.2

Sample Description: Co	Sample Description: Composite #2				
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L			
Arsenic	<1.0	5			
Barium	<2.0	100			
Cadmium	<0.20	1			
Chromium	<0.20	5			
Copper	<0.20	NA ·			
Lead	0.217	5			
Selenium	<1.0	1			
Silver	<0.20	5			
Zinc	2.68	NA			
Mercury	<0.0002	0.2			

Sample Description:	Composite #3	
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L
Arsenic	<1.0	5
Barium	<2.0	100
Cadmium	<0.20	1
Chromium	<0.20	5
Copper	<0.20	NA
Lead	<0.20	5
Selenium	<1.0	1


Silver	<0.20	5
Zinc	4.55	NA
Mercury	<0.0002	0.2

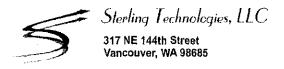
Sample Description:	Composite #4	
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L
Arsenic	<1.0	5
Barium	<2.0	100
Cadmium	0.332	1
Chromium	<0.20	5
Copper	<0.20	NA
Lead	0.323	5
Selenium	<1.0	1
Silver	<0.20	5
Zinc	13.4	NA ,
Mercury	<0.0002	0.2

Sample Description	: Composite #5	
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L
Arsenic	<1.0	5
Barium	<2.0	100
Cadmium	<0.20	1

Chromium	<0.20	5
Copper	0.509	NA
Lead	1.39	5
Selenium	<1.0	. 1
Silver	<0.20	5
Zinc	5.28	NA
Mercury	<0.0002	0.2

Sample Description: Composite #6				
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L		
Arsenic	<1.0	5		
Barium	2.32	100		
Cadmium	<0.20	1		
Chromium	<0.20	5		
Copper	<0.20	NA		
Lead	<0.20	5		
Selenium	<1.0	1		
Silver	<0.20	5		
Zinc	2.63	NA		
Mercury	<0.0002	0.2		

Sample Description: CB-SB-5			
Analyte	Result mg/L	TCLP Hazardous Waste Limit mg/L	
Arsenic	<1.0	5	
Barium	<2.0	100	
Cadmium	<0.20	1	
Chromium	<0.20	5	
Copper	<0.20	NA	
Lead	0.347	5	
Selenium	<1.0	1	
Silver	<0.20	5	
Zinc	19.1	NA	
Mercury	<0.0002	0.2	


Polynuclear Aromatic Compounds per EPA 8270-SIM

Sample Description: Composite #1		
Analyte	Result	Units
Acenaphthene	<0.334	mg/kg
Acenaphthylene	<0.334	mg/kg
Anthracene	<0.334	mg/kg
Benzo(a)Anthracene	<0.334	mg/kg
Benzo(a)Pyrene	<0.334	mg/kg
Benzofluoranthene	<0.334	mg/kg
Benzo(ghi)Perylene	<0.334	mg/kg
Benzo(k)Fluoranthene	<0.334	mg/kg
Chrysene	0.374	mg/kg
Dibenz(a,h)Anthracene	<0.334	mg/kg
Fluoranthene	0.524	mg/kg
Fluorene	<0.334	mg/kg
Indeno(1,2,3-cd)Pyrene	<0.334	mg/kg
Naphthalene	<0.334	mg/kg
Phenanthrene	<0.334	mg/kg
Pyrene	0.487	mg/kg

Polynuclear Aromatic Compounds per EPA 8270-SIM

Sample Description: Composite #2		
Analyte	Result	Units
Acenaphthene	<0.167	mg/kg
Acenaphthylene	<0.167	mg/kg
Anthracene	<0.167	mg/kg
Benzo(a)Anthracene	<0.167	mg/kg
Benzo(a)Pyrene	<0.167	mg/kg
Benzofluoranthene	<0.167	mg/kg
Benzo(ghi)Perylene	<0.167	mg/kg
Benzo(k)Fluoranthene	<0.167	mg/kg
Chrysene	0.213	mg/kg
Dibenz(a,h)Anthracene	<0.167	mg/kg
Fluoranthene	<0.167	mg/kg
Fluorene	<0.167	mg/kg
Indeno(1,2,3-cd)Pyrene	<0.167	mg/kg
Naphthalene	<0.167	mg/kg
Phenanthrene	<0.167	mg/kg
Pyrene	<0.167	mg/kg

Sample Description: Composite #3			
Analyte	Result	Units	
Acenaphthene	<0.330	mg/kg	
Acenaphthylene	<0.330	mg/kg	
Anthracene	<0.330	mg/kg	
Benzo(a)Anthracene	<0.330	mg/kg	
Benzo(a)Pyrene	<0.330	mg/kg	
Benzofluoranthene	<0.330	mg/kg	
Benzo(ghi)Perylene	<0.330	mg/kg	
Benzo(k)Fluoranthene	<0.330	mg/kg	
Chrysene	<0.330	mg/kg	
Dibenz(a,h)Anthracene	<0.330	mg/kg	
Fluoranthene	0.500	mg/kg	
Fluorene	<0.330	mg/kg	
Indeno(1,2,3-cd)Pyrene	<0.330	mg/kg	
Naphthalene	<0.330	mg/kg	
Phenanthrene	0.398	mg/kg	
Pyrene	0.453	mg/kg	

Sample Description: Cor	nposite #4	
Analyte	Result	Units
Acenaphthene	<0.330	mg/kg
Acenaphthylene	<0.330	mg/kg
Anthracene	<0.330	mg/kg
Benzo(a)Anthracene	0.488	mg/kg
Benzo(a)Pyrene	0.458.	mg/kg
Benzofluoranthene	0.580	mg/kg
Benzo(ghi)Perylene	<0.330	mg/kg
Benzo(k)Fluoranthene	0.422	mg/kg
Chrysene	0.749	mg/kg
Dibenz(a,h)Anthracene	<0.330	mg/kg
Fluoranthene	1.55	mg/kg
Fluorene	<0.330	mg/kg
Indeno(1,2,3-cd)Pyrene	<0.330	mg/kg
Naphthalene	<0.330	mg/kg
Phenanthrene	1.15	mg/kg
Pyrene	1.43	mg/kg

Sample Description: Composite #5			
Analyte	Result	Units	
Acenaphthene	<0.167	mg/kg	
Acenaphthylene	<0.167	mg/kg	
Anthracene	<0.167	mg/kg	
Benzo(a)Anthracene	<0.167	mg/kg	
Benzo(a)Pyrene	0.175	mg/kg	
Benzofluoranthene	0.219	mg/kg	
Benzo(ghi)Perylene	<0.167	mg/kg	
Benzo(k)Fluoranthene	0.190	mg/kg	
Chrysene	0.294	mg/kg	
Dibenz(a,h)Anthracene	<0.167	mg/kg	
Fluoranthene	0.372	mg/kg	
Fluorene	<0.167	mg/kg	
Indeno(1,2,3-cd)Pyrene	<0.167	mg/kg	
Naphthalene	<0.167	mg/kg	
Phenanthrene	0.255	mg/kg	
Pyrene	0.378	mg/kg	

Sample Description: Composite #6			
Analyte	Result	Units	
Acenaphthene	<0.133	mg/kg	
Acenaphthylene	<0.133	mg/kg	
Anthracene	<0.267	mg/kg	
Benzo(a)Anthracene	<0.133	mg/kg	
Benzo(a)Pyrene	<0.267	mg/kg	
Benzofluoranthene	<0.267	mg/kg	
Benzo(ghi)Perylene	<0.267	mg/kg	
Benzo(k)Fluoranthene	<0.267	mg/kg	
Chrysene	<0.133	mg/kg	
Dibenz(a,h)Anthracene	<0.267	mg/kg	
Fluoranthene	0.167	mg/kg	
Fluorene	<0.267	mg/kg	
Indeno(1,2,3-cd)Pyrene	<0.267	mg/kg	
Naphthalene	<0.133	mg/kg	
Phenanthrene	0.528	mg/kg	
Pyrene	0.307	mg/kg	

Sample Description: CB-SB-5			
Analyte	Result	Units	
Acenaphthene	0.747	mg/kg	
Acenaphthylene	<0.331	mg/kg	
Anthracene	1.06	mg/kg	
Benzo(a)Anthracene	0.780	mg/kg	
Benzo(a)Pyrene	<0.331	mg/kg	
Benzofluoranthene	0.517	mg/kg	
Benzo(ghi)Perylene	<0.331	mg/kg	
Benzo(k)Fluoranthene	0.367	mg/kg	
Chrysene	1.05	mg/kg	
Dibenz(a,h)Anthracene	<0.331	mg/kg	
Fluoranthene	4.33	mg/kg	
Fluorene	1.31	mg/kg	
Indeno(1,2,3-cd)Pyrene	<0.331	mg/kg	
Naphthalene	0.355	mg/kg	
Phenanthrene	6.08	mg/kg	
Pyrene	3.22	mg/kg	

Sterling Technologies Field Sampling Log Sheet

Site/Project:

Sulzer Pump

Date:

5/7/2006

Sampling Staff:

Cheryl Vezzani, Tim Mace

Field pH Calibration:

99.2 slope

pH Control Standard: 7.4

7.43 ref. 7.40 ± 0.05

13.3	6.68	10:06 AM Grab from catch basin, outfall not flowing under pier.
12.7		
	6.32	9:55 AM Sampled large vault in new alley way
13.1	5.70	10:50 AM Grab from large catch basin, outfall under pier was under water.
12.7	6.84	10:28 AM Sampled catch basin, outfall flowing under pier but inaccessible
14.5	6.62	11:28 AM Sampled catch basin. Could not locate outfall under pier
11.4	5.40	9:23 AM Sampled outfall under pler.
13.4	6.55	12:12 PM Sampled catch basin, outfall flowing under pier but inaccessible
16.6	7.19	10:50 AM Storage tank for water from catch basin cleanout
	12.7 14.5 11.4 13.4	12.7 6.84 14.5 6.62 11.4 5.40 13.4 6.55

Data Summary Storm Water Sampling

Diesel and Heavy Range Hydrocarbons by NWTPH-Dx

Sample ID	Diesel Range mg/L	Heavy Oil Range mg/L
CB-1	1.24	3.89
CB-5	2.41	1.24
CB-6	1.52	1.80
SD-2	2.86	1.72
Outfall-C	0.866	0.571
H₂O Storage Tank	2.12	1.50
CB-17	<0.248	0.524
CB-15	2.21	2.04

BTEX per EPA Method 8021B

Sample Description: H2O Storage Tank			
Analyte	Result	Units	
Benzene	<0.500	mg/L	
Toluene	2.16	mg/L	
Ethylbenzene	<0.500	mg/L	
Xylenes	1.90	mg/L	

Oil and Grease Analysis per EPA Method 1664/1664A

Sample ID	Oil & Grease Result	Units
CB-1	<4.76	mg/L
CB-5	<4.76	mg/L
CB-6	<4.76	mg/L
SD-2	<4.76	mg/L
Outfall-C	<4.85	mg/L
H₂O Storage Tank	<4.76	mg/L_
CB-17	<4.81	mg/L
CB-15	<4.76	mg/L

Total Suspended Solids per EPA 160.2

Sample ID	TSS Result	Units
CB-1	37.0	mg/L
CB-5	<10.0	mg/L
CB-6	12.0	mg/L
SD-2	20.0	mg/L
Outfall-C	<10.0	mg/L
H₂O Storage Tank	15.0	mg/L
CB-17	<10.0	mg/L
CB-15	42.0	mg/L

Total Metals Per EPA 200 Series Methods

Sample ID	Units	Chromium	Copper	Lead	Zinc
CB-1	mg/L	0.00817	0.0184	0.00820	0.239
CB-5	mg/L	0.00141	0.0332	0.0020	0.693
CB-6	mg/L	0.00185	0.0130	0.00593	0.128
SD-2	mg/L	0.00207	0.0339	0.00226	0.314
Outfall-C	mg/L	<0.00100	0.0282	0.00220	0.329
H₂O Storage Tank	mg/L.	0.00262	0.0346	0.0416	0.0784
CB-17	mg/L	<0.00100	<0.00200	<0.00100	0.0119
CB-15	mg/L	0.00471	0.0707	0.00702	0.279

Sample Description: CB-1			
Analyte	Result	Units	
Acenaphthene	<0.0980	ug/L	
Acenaphthylene	<0.0980	ug/L	
Anthracene	<0.0980	ug/L_	
Benzo(a)Anthracene	<0.0980	ug/L	
Benzo(a)Pyrene	<0.0980	ug/L	
Benzofluoranthene	<0.0980	ug/L	
Benzo(ghi)Perylene	<0.0980	ug/L	
Benzo(k)Fluoranthene	<0.0980	ug/L_	
Chrysene	<0.0980	ug/L	
Dibenz(a,h)Anthracene	<0.196	ug/L	
Fluoranthene	<0.147	ug/L	
Fluorene	<0.0980	ug/L	
Indeno(1,2,3-cd)Pyrene	<0.0980	ug/L	
Naphthalene	<0.0980	ug/L	
Phenanthrene	0.221	ug/L	
Pyrene	<0.0980	ug/L	

Sample Description: C	B-5	
Analyte	Result	Units
Acenaphthene	<0.0952	ug/L
Acenaphthylene	<0.0952	ug/L
Anthracene	<0.0952	ug/L
Benzo(a)Anthracene	<0.0952	ug/L
Benzo(a)Pyrene	<0.0952	ug/L
Benzofluoranthene	<0.0952	ug/L
Benzo(ghi)Perylene	<0.0952	ug/L
Benzo(k)Fluoranthene	<0.0952	ug/L
Chrysene	<0.0952	ug/L
Dibenz(a,h)Anthracene	<0.190	ug/L
Fluoranthene	<0.0952	ug/L
Fluorene	<0.143	ug/L
Indeno(1,2,3-cd)Pyrene	<0.0952	ug/L
Naphthalene	<0.190	ug/L
Phenanthrene	<0.0952	ug/L
Pyrene	<0.0952	ug/L

Sample Description: CB-	6	
Analyte	Result	Units
Acenaphthene	<0.0962	ug/L
Acenaphthylene	<0.0962	ug/L
Anthracene	<0.0962	ug/L
Benzo(a)Anthracene	<0.0962	ug/L
Benzo(a)Pyrene	<0.0962	ug/L
Benzofluoranthene	<0.0962	ug/L
Benzo(ghi)Perylene	<0.0962	ug/L
Benzo(k)Fluoranthene	<0.0962	ug/L
Chrysene	<0.0962	ug/L
Dibenz(a,h)Anthracene	<0.192	ug/L
Fluoranthene	<0.0962	ug/L
Fluorene	<0.0962	ug/L
Indeno(1,2,3-cd)Pyrene	<0.0962	ug/L
Naphthalene	<0.144	ug/L
Phenanthrene	0.201	ug/L
Pyrene	<0.0962	ug/L

Sample Description: SD-2				
Analyte	Result	Units		
Acenaphthene	<0.0962	ug/L		
Acenaphthylene	<0.0962	ug/L		
Anthracene	<0.0962	ug/L		
Benzo(a)Anthracene	<0.0962	ug/L		
Benzo(a)Pyrene	<0.0962	ug/L		
Benzofluoranthene	<0.0962	ug/L		
Benzo(ghi)Perylene	<0.0962	ug/L		
Benzo(k)Fluoranthene	<0.0962	ug/L		
Chrysene	<0.0962	ug/L		
Dibenz(a,h)Anthracene	<0.192	ug/L		
Fluoranthene	<0.0962	ug/L		
Fluorene	<0.192	ug/L		
Indeno(1,2,3-cd)Pyrene	<0.0962	ug/L		
Naphthalene	<0.192	ug/L		
Phenanthrene	<0.144	ug/L		
Pyrene	<0.0962	ug/L.		

Sample Description: C	Outfall-C	
Analyte	Result	Units
Acenaphthene	<0.0952	ug/L
Acenaphthylene	<0.0952	ug/L
Anthracene	<0.0952	ug/L
Benzo(a)Anthracene	<0.0952	ug/L
Benzo(a)Pyrene	<0.0952	ug/L
Benzofluoranthene	<0.0952	ug/L
Benzo(ghi)Perylene	<0.0952	ug/L
Benzo(k)Fluoranthene	<0.0952	ug/L
Chrysene	<0.0952	ug/L
Dibenz(a,h)Anthracene	<0.190	ug/L
Fluoranthene	<0.0952	ug/L
Fluorene	<0.0952	ug/L_
Indeno(1,2,3-cd)Pyrene	<0.0952	ug/L
Naphthalene	<0.0952	ug/L
Phenanthrene	<0.0952	ug/L
Pyrene	<0.0952	ug/L_

Sample Description: H	l₂0 Storage Tank	
Analyte	Result	Units
Acenaphthene	<0.189	ug/L
Acenaphthylene	<0.189	ug/L
Anthracene	<0.0943	ug/L_
Benzo(a)Anthracene	<0.0943	ug/L
Benzo(a)Pyrene	<0.0943	ug/L
Benzofluoranthene	<0.0943	ug/L
Benzo(ghi)Perylene	<0.0943	ug/L
Benzo(k)Fluoranthene	<0.0943	ug/L
Chrysene	<0.0943	ug/L
Dibenz(a,h)Anthracene	<0.189	ug/L
Fluoranthene	<0.0943	ug/L
Fluorene	<0.189	ug/L
Indeno(1,2,3-cd)Pyrene	<0.0943	ug/L
Naphthalene	<0.189	ug/L
Phenanthrene	<0.0943	ug/L
Pyrene	<0.0943	ug/L

Sample Description: CE	3-17	
Analyte	Result	Units
Acenaphthene	<0.0971	ug/L
Acenaphthylene	<0.0971	ug/L
Anthracene	<0.0971	ug/L.
Benzo(a)Anthracene	<0.0971	ug/L
Benzo(a)Pyrene	<0.0971	ug/L
Benzofluoranthene	<0.0971	ug/L
Benzo(ghi)Perylene	<0.0971	ug/L
Benzo(k)Fluoranthene	<0.0971	ug/L
Chrysene	<0.0971	ug/L
Dibenz(a,h)Anthracene	<0.194	ug/L
Fluoranthene	<0.0971	ug/L
Fluorene	<0.0971	ug/L
Indeno(1,2,3-cd)Pyrene	<0.0971	ug/L
Naphthalene	<0.0971	ug/L
Phenanthrene	<0.0971	ug/L
Pyrene	<0.0971	ug/L

Sample Description: C	B-15	
Analyte	Result	Units
Acenaphthene	<0.0980	ug/L
Acenaphthylene	<0.0980	ug/L
Anthracene	<0.0980	ug/L
Benzo(a)Anthracene	<0.0980	ug/L
Benzo(a)Pyrene	<0.0980	ug/L
Benzofluoranthene	<0.0980	ug/L
Benzo(ghi)Perylene	<0.0980	ug/L
Benzo(k)Fluoranthene	<0.0980	ug/L
Chrysene	<0.0980	ug/L
Dibenz(a,h)Anthracene	<0.196	ug/L
Fluoranthene	<0.0980	ug/L
Fluorene	<0.196	ug/L
Indeno(1,2,3-cd)Pyrene	<0.0980	ug/L
Naphthalene	<0.147	ug/L
Phenanthrene	<0.147	ug/L
Pyrene	<0.0980	ug/L

.

Appendix C – Waste Disposal Documentation

Sterling Technologies, LLC

:
1
¥
!
:

Hillsboro Landfill, Inc. 3205 SE MINTER BRIDGE ROAD HILLSBORO, OR 97123

PERMIT # 9653

PERMIT TO DISPOSE OF NON-HAZARDOUS MATERIALS

This permit authorizes disposal of Customer's waste Waste & Disposal Services Agreement			with the Industrial
			XPIRES: 6/22/06
GENERATOR: SULZER PUM	P		
DESCRIPTION: CATCH BASIN SOLIDS		TONS:25	
□SPECIAL WASTE ⊠CS □C&D □C UP	LEAN-		
LOCATION: PORTLAND, OREGON 2800 NW FRONT STREET		COUNTY:	Multnomah
CONTACT: THOMAS NADERMANN		PHONE: 3	360-576-6331
		FAX: 3	360-576-6373
BILLING: Landfill account STERLING TECHNOLOGIES	PO#: N/A		JOB#: N/A
We accept business checks, cash, VISA / Maste	ercard or char	ge(with prior	· approval)
SPECIAL HANDLING: NOTE: NO FREE LIQUIDS			
MK			ТуТ

APPROVED:

KRISTIN CASTNER

DATE: 07/26/06 4:31:15 PM

A COPY OF THIS PERMIT MUST BE SHOWN BY EACH DRIVER THERE IS A MINIMUM CHARGE OF \$50-\$60 FOR EACH LOAD OF SPECIAL WASTE

WASTE MANAGEMENT

HAZARDOUS WASTE IS STRICTLY PROHIBITED

				; ; !
				; ;
				1
				;
				i i
				i
				ŀ
				:
				:
				i .

Jul 26 2006 3:18PM ORRCO	
Urtland, Oregon 97217 Kenr	OR: EPA#OND9989988775 No. 164406
Thone 503-286-3352 FI Free 800-367-8894 Oil Re-Refining North Bend,	
A# ORD980975692 Company Safe Lake City Spokane, WA	
SULZER SUM	Street 5028/25 #
Name 2800 NN FROM MES PDX 02	Na J
Address City State Up Consigned To:	County
Destination:	(Check# PO#
Via Carrier:	AY West Company of Profile Date: 127-6
	les Run: Load Ticket # 6003/84
Gal./Brl. Description	Sniffer COT/ H Flash Rate per Rate per Charge
C40 Privse NAR	P/F HCDT Proint Gal./Brl. Hour Charge
THE W CAN TIME 9 HOS	7500 1500
7723	
20F2 7 (164 HOT + 164	(406)
Above material being transported for Recycling EPA# 320 0090	02 4605 Total:
ustomer warrants that the waste petroleum products being transferred by the esticides, chlorinated solvents at concentrations greater than 1000 PPM, PCB other material classified as hazardous waste by 40 CFR part 261, Subparts C at or by any equivalent state hazardous substance classification program. Should bustomer (generator) against to pay for all diagonal costs incurred.	As at concentrations greater than 2 PPNA (or 50 PPNA with Analytical), or any and D (implementing the federal Resource Conservation and Recovery Act), Laboratory tests find this waste not in compliance with 40 CFR Part 261,
IGNED X MASSIA (SCIN)	DATE: U
Property of the Control of the Contr	

transcensor and the second

total and a second

Section 19

homenskinner(t)

la company de la

		-
		: ; *** : : : : : : : : : : : : : : : : : :
		l !
		:
		:
		:

4150 N Suttle Road, Portland, OR. 97217, 7717

Invoice

Difference 2 199510

The Total Control of the Control of

P.O. No.	Telms	Due Date	Account #	Ship Date	Ship Via	BL#
	Talims Nel 10 Days	7/17/2006	10462	6/27/2006	ORRCO	164405

Description	Qty	Rate	Amount
Water Truck & Triver	1,200	0.35	420.00
Truck & Priver	2	75.00	150.00
Fuel Sarcharge	. 1	5.00	5.00

						}
				Subtotal	\$575,00	***************************************
1	We accept all major	credit cards.	-	Sales Tax (0.0%)	\$0.00	
	A 1.5% Service cha not paid within our	•	num is charged for invoices	Total	\$575.00	
1	tot paid within our	terms.		Payments/Credits	\$0.00	
		•		Balance Due	\$575.00	<u> </u>
	Phone #	Fax #	E-mail	· Web Site		
	503-286-8352	503-286-5027	Suee@ORRCO.biz	www.ORRCO.biz		
4				·		ĺ

				i.
				,
				4
				:
				i
				:
				:
				; ;
				:
	•			
				. 1

Consigned To: Consigned To: Consigned To: Check# Po#	Jul 2 Adquarters 0 N. Suttle ortland, Oreg 'hone, 503-286 Free 800-36 A# ORD980	on 97217 -8352 67-8894	ORRO	CO Oil Re-Refining	Kennewick Medford, C North Ben	WA: alls, OR: , WA: DR: d, OR: Tity, UT:	EPA# ORC EPA# WAI EPA# ORD EPA# ORE EPA# ORE EPA# UTC EPA#WAH	90000245 9885 i 9- 9809807 40000 i 15 9987 i 970 19809782	419 75 577 192 266 159	No. Date:	164 6	405 -27-		5
Consigned To: Destination: Wis Carrier: Driver: A17215 Truck # 2487 Miller Run: Load Ticket # Cog 3 4 3 3 4 3 3 4 3 4 3 3 4 3 4 3 4 3 4	Transport				NYS	75	DE BIL	725	dess			ne		
Driver: N1215 Truck # 5457 Misse Run: Load Ticket # 6005 43 Gal./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. S		0:	FUEL				GOUNTY		# 44	·				
Driver: N1215 Truck # 5457 Misse Run: Load Ticket # 6005 43 Gal./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. Sal./Brl. Sheeper Charge Rol./Brl. Description P/F RCDT PH Point Sal./Brl. S	Destination:					\$\frac{1}{2}				Check#	<u>!</u>			
Cal./Brl. Description Spifer CDT/ pH Flash Rate per Rate per Charge Resident Cal./Brl. Hour Cal./Brl. Hour Charge Resident Cal./Brl. Hour Charge Resident Cal./Brl. Hour Charge Resident Cal./Brl. Hour Charge Resident Res	Via Carrier:					ス。	A CONTRACTOR OF THE PARTY OF TH	•		Profile	Date:	6-2	7-6	
Above material being transported for Recycling EPA# Above collector to not software than 2 cPA# (as the content of the collector and software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations of software) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as the concentrations) Above collector and software than 2 cPA# (as th		CHRIS		# 648	7	Mes Ru	n:	Teniffor	CDT	4 1				
Above material being transported for Recycling EPA# John 200 24605 Jary Total: 57000 John warrants that the waste petroleum products being transferred by the above collector do not ophiain any contaminants including, without limitation wasteries, choicinated solvents of concentrations greater than 1000 PPM, PCBs at concentrations greater than 2PPM (or 50 PPM with Analytical), or any equivalent state hazardous waste by 40 CPT part 201, Subpass C and 0 (inglementing the deciral Resource Conservation and Recovery Arch, or by any equivalent state hazardous substance classification program. Should Laboratory tests find this waste not in compliance with 40 CPT Part 261, astomic (perentation) agrees to pay for all diseases costs incurred. IGNED X Jacks 1 Jacks 2 (Scourst V) DATE: 26 - 27 - 26	0000					_		P/F			Point	Gai./Brl.	Hour	Charge
Above material being transported for Recycling EPA# DN 009024605 Jag Total: 57700 ashore warrants that the waste petroleum products being transferred by the above collector on or cyclitain any contaminants including, without limitation present than 1000 PPM, PCBs at concentrations greater than 2 PPM for 50 PPM with Analytical, or any other material classified as hazardous waste by 40 CFR part 261, Subparts C and D (Implementing the federal Resource Conservation and Recovery Act), by any equivalent state hazardous waste by 40 CFR part 261, Subparts C and D (Implementing the federal Resource Conservation and Recovery Act), is storier (generator) agrees to pay for all glanger costs incurred. IGNED X Jackson V CFR and 261, Subparts C and D (Implementing the federal Resource Conservation and Recovery Act). DATE: PG - 27 OC	300	The state of the s	NSFL	108	1//			1		17	2200	بكك		90
Above material being transported for Recycling EPAH JRN 07024606 Jay Total: 57000 stomer warrants that the waste pertoleum products being transferred by the above collector do not containments including, without limitation positiones, chlorinated solvents at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2 PPM for 50 PPM with Anaptical), or any other material classified as hazardous waste by 40 CFR part 261, Subparts C and 0 (Implementing the feeteral Resource Conservations and Recovery Act), or by any equivalent state hazardous substance classification program. Should Laboratory tests find this waste not in compliance with 40 GFR Part 261, is somer (generator) agrees to pay for all disposal costs incurred. (Security) DATE: 06-27-06	Coolin	(BIVILI)	DICAL	AT IS	Hed)									
Above material being transported for Recycling EPA# X70 or 90 2 4 605			- Charles	····	,					_				
Above material being transported for Recycling EPA# X70 or 90 2 4 605	 -	777	W T		2100					-		7,000	,	
Above material being transported for Recycling EPA# 070 070 2.4605 Jeg Total: 570 00 solutions as long transferred by the above collector on pot optimia any contaminants including, without limitation pasticides, chicrinated solvents at concentrations greater than 1000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2000 PPM, PCBs at concentrations g	E;				- 1/Y/ \									. V)
stomer warrants that the waste petroleum groducts being transferred by the above collector do not critain any contaminants including, without limitation positiodes, chlorinated solvents at concentrations greater than 1000 PPM, PCBs at concentration greater than 1000 PPM, PCBs at		- V (50)		<u>, </u>	<u>~/ </u>	, se) (4406)					12	/>	
	Above material	being transporte	10F2.	10 AD 5 #	164405			Sa	'q		Total:		.570	200
	ıslomer warrz pesticides, chlo other material c or by any equiv vstomer (gene	ants that the wasterinated solvents a classified as hazard alent state hazard praior) agrees to p	of 2. In d for Recycling In petroleum product concentrations In dous waste by 4th In part of the concentrations In part of the concentrations In part of the concentrations In part of the concentration of the conc	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	OTY 00 onsterred by to 1000 PPM, P or	9024 he above CBs at c C and D Id Labor	collector of concentration (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitatio , or any erv Act)
	ıslomer warrz pesticides, chlo other material c or by any equiv vstomer (gene	ants that the wasterinated solvents a classified as hazard alent state hazard praior) agrees to p	of 2. In d for Recycling In petroleum product concentrations In dous waste by 4th In part of the concentrations In part of the concentrations In part of the concentrations In part of the concentration of the conc	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	OTY 00 onsterred by to 1000 PPM, P or	9024 he above CBs at c C and D Id Labor	collector of concentration (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitatio , or any erv Act)
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazard alent state hazard praior) agrees to p	of 2. In d for Recycling In petroleum product concentrations In dous waste by 4th In part of the concentrations In part of the concentrations In part of the concentrations In part of the concentration of the conc	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	OTY 00 onsterred by to 1000 PPM, P or	9024 he above CBs at c C and D Id Labor	collector of concentration (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitatio , or any erv Act)
	ıslomer warrz pesticides, chlo other material c or by any equiv vstomer (gene	ants that the wasterinated solvents a classified as hazard alent state hazard praior) agrees to p	of 2. In d for Recycling In petroleum product concentrations In dous waste by 4th In part of the concentrations In part of the concentrations In part of the concentrations In part of the concentration of the conc	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	OTY 00 onsterred by to 1000 PPM, P or	9024 he above CBs at c C and D Id Labor	collector of concentration (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitatio , or any erv Act)
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazard alent state hazard praior) agrees to p	of 2. In d for Recycling In petroleum product concentrations In dous waste by 4th In part of the concentrations In part of the concentrations In part of the concentrations In part of the concentration of the conc	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	ark) oo	9024 he above CBs at C and D Id Labor	c collector (concentration) (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitation , or any ery Act).
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazar alent state hazard aralor) agrees to p	d for Recycling e petroleum produ t concentrations dous waste by 4t fous substance cl ay for all dispos	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	ark) oo	9024 he above CBs at C and D Id Labor	c collector (concentration) (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recove CFR Pai	limitation , or any ery Act).
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazar alent state hazard aralor) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t lous substance cl ay for all dispos	Lo RD 5 ## EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 acosts incurr	ark) oo	9024 he above CBs at C and D Id Labor	c collector (concentration) (implement atory tests	to not co ns gréat ting the i	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recovi CFR Pai	limitatio , or any erv Act)
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazar alent state hazard aralor) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t tous substance cl ay for all dispos	Lo RJ 5 ## Lects being trangreater than D CFR part 26 lassification part 26 lassificatio	ark) oo ansterred by to 1000 PPM, P 1000 PPM, P Subparts o orogram. Shou red.	9024 he above CBs and D Id Labor	e collector of concentration (implement atory tests	to not consistence of the second consistency of the second consistence	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recovi CFR Pai	limitatio , or any erv Act)
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazar alent state hazard aralor) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t tous substance cl ay for all dispos	Lo RJ 5 ## Lects being trangreater than D CFR part 26 lassification part 26 lassificatio	ark) oo ansterred by to 1000 PPM, P 1000 PPM, P Subparts o orogram. Shou red.	9024 he above CBs and D Id Labor	e collector of concentration (implement atory tests	to not consistence of the second consistency of the second consistence	intain er thai federal	n 2 PPM I Resoun not in c	aminants (or 50 P ce Conse omplianc	PM with A ervation ar e with 40	inalytical) id Recovi CFR Pai	limitatio , or any erv Act)
	islomer warra pasticides, chlo other material c or by any equiv istomer (gene	ants that the wasterinated solvents a classified as hazar alent state hazard aralor) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t tous substance cl ay for all dispos	EPA# ucts being tra greater than 0 CFR part 26 lassification part 26 lassification part 26	ORY 00 ansterred by to 1000 PPM, Ps. Torogram. Should be constructed.	9024 he above CBs and D Id Labor	e collector of concentration (implement atory tests	to not consistence of the second consistency of the second consistence	ntain er tha federal waste	n 2 PPM I Resour not in c	aminants (or 50 Price Conse compliance	PM with A ervation ar e with 40	inalytical) id Recovi CFR Pai	limitatio , or any erv Act)
	Istomer warra Jesticides, chlo other material c or by any equiv stomer (gene IGNED X	ants that the wasterinated solvents a classified as hazard alent state hazard arator) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t lous substance cl ay for all dispos	EPA# Lots being tra greater than D CFR part 26 lassification p R costs incurr	ORN OO ansferred by to 1000 PPM, Po 1000 PPM	9024 he above CBs and D id Labor	e collector of concentration (implement atory tests	to not consistence of the second consistency of the second consistence	ntain er tha federal waste	n 2 PPM I Resour not in c	aminants (or 50 Prese Conse complianc	PM with A vation are with 40	inalytical) ad Recovi CFR Pai	limitatio , or any erv Act)
	Istomer warra posticides, chlo other material c or by any equiv stomer (gene IGNED X	ants that the wasterinated solvents a classified as hazard alent state hazard arator) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t lous substance cl ay for all dispos	EPA# Lots being tra greater than D CFR part 26 lassification p R costs incurr	ORN OO ansferred by to 1000 PPM, Po 1000 PPM	9024 he above CBs and D id Labor	e collector of concentration (implement atory tests	to not consistence of the second consistence	ntain er tha federal waste	n 2 PPM I Resour not in a DAT	aminants (or 50 Prese Conse complianc	PM with A vation are with 40	inalytical) ad Recovi CFR Pai	limitation , or any ery Act).
	Istomer warra posticides, chlo other material c or by any equiv stomer (gene IGNED X	ants that the wasterinated solvents a classified as hazard alent state hazard arator) agrees to p	d for Recycling a petroleum produ t concentrations dous waste by 4t lous substance cl ay for all dispos	EPA# Lots being tra greater than D CFR part 26 lassification p R costs incurr	ORN OO ansferred by to 1000 PPM, Po 1000 PPM	9024 he above CBs and D id Labor	collector of concentration (implement atory tests	to not consistence of the second consistency of the second consistence	Intain er thai federal waste	n 2 PPM I Resour not in a	aminants (or 50 Proce Conse complianc	PM with A valion are with 40	inalytical) ad Recovi CFR Pai	limitation , or any ery Act).

West Strangers

Construction (Construction Construction Cons

.

		ŧ
		t v
		·
		4
	·	
		• • •
		i ,
)
) ;
		i
		· · · · · · · · · · · · · · · · · · ·

	Generator Name SULTER FUM Location
	2 2800 NW PRINT RYF PDX 8R
	Generator Fills Out Waste/Material Profile (One completed profile per product)
	Description: Used Automotive Oil DDIY Used Oil Machine Lubricating Oil Machine Tool Cutting and/or Cooling Fluids
	(including used solutions)containing at least 1% petroleum 🗆 Hydraulic Oll 🖾 Brake Fluid 🗆 Refrigeration Oil 🗗 📢 🗐 s 🖵
	Oil Filters ☐ Antifreeze☐ Oil Used as a Non-Contact Heat Transfer Media☐ Solvent☐
	Unused Fuels and Type:Description(where and how generated)
1	Water/Petroleum Mixtures: Type Fiv S = 100
5	Percent Water 95 % Actual Calculation Process Knowledge Clear Tube Kolor Kut
10	in the state of the second of the second of the state of
11	Generator hereby certifies that no dilution of oil containing PCBs has occurred below any regulatory threshold:
12	Signed:
13	Oily Solids: Tank Sludge □ Sump Sludge □ Contaminated Soil □ Spill Cleanup Material □
14	Other (Specify):Attach all pertinent documents
15	Solvent: Flash Point
16	Has generator mixed solvent with any hazardous waste? Yes □ No□ If yes, Stop Call Supervisor
17	For all wastes or materials,provide the following information: Field Data
18	Sniffer Test Passed Failed Date Tested 27 Clor-D-Test Results D PPM Date Tested 1-27 PH
19	Is Material Mixed With Hazardous Waste?Yes □ No ☑ If yes, Stop call Supervisor
20	Corrosive?Yes□ No□ Reactive? Yes□ No□ Toxic? Yes□ No□ Listed? Yes□No□ Flash Over 1409 F Yes□ No□
21	List All Pertinent Information(Describe process of waste generation in detail) Attach all Documentation
22	including all MSDS sheets & test results;
23	VESCINS REGULAR MOINTINGS DATER USD
24	(Polly Habiting Towk)
25	THE CLEAN COTCH STAINS + LINES
26	
27	
28	Name and Title of Person providing information: Why Wzzani , Chemist
29	Facility E.P.A. REG # 02005024605 HW Generator Status: LQG SQG X CEG
30	
31	Certification & Guarantee
32	As generator of the material described in this profile (or authorized representative of the generator), I hereby certify that the information
33	contained in this document is accurate and complete. I further certify that this material has NOT been mixed with any contaminants including,
34 35	without limitation. Pesticides and waste listed or identified as hazardous waste under RCRA, or, if mixing has occurred, this material has been mixed with an ignitable-only hazardous waste in compliance with the used oil mixture rule, or C.E.G. exemption. In the event that the material
36	described in this document is in fact hazardous waste,
37	I hereby guarantee to pay all gosts necessary for proper analysis, transportation, storage and disposal.
38 39	Signed YMMy Uzzani Title Chemist Date 637-06
40	Receiving Facility Data Analytical Attached make
41	Is Waste/Material Acceptable for Processing?: Yes No Explanation Of San PH-7
42	Accepted Signed Title AO Date 06-27-04
43	Rejected Reason
14	Returned to Generator? Yes No Stransported To:

						î
						·
						•
·						
						:
			•			1
						•
						4 *
						Ì

Appendix D –Lab Data

Sterling Technologies, LLC

	•
•	
	•

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 425.420.9200 fax 425.420.9210 East 11.115 Montgomery, Suite B, Spokane, WA 99206-4776 509.924.9200 fax 509.924.9290 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 503.906.9200 fax 503.906.9210

Portland

Spokane

20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 541.383.9310 fax 541.382.7588 Bend

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 907.563.9200 fax 907.563.9210 Anchorage

November 17, 2005

Thomas Nadermann Sterling Technologies, LLC 317 NE 144th Street Vancouver, WA 98685

RE: Sulzer Pump

Enclosed are the results of analyses for samples received by the laboratory on 11/01/05 14:10. The following list is a summary of the NCA Work Orders contained in this report. If you have any questions concerning this report, please feel free to contact me.

<u>Work</u>	Project	<u>ProjectNumber</u>
P5K0128	Sulzer Pump	ST-SP-001

Thank You,

Brian Cone, Industrial Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

> North Creek Analytical, Inc. Environmental Laboratory Network

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (509) 924.9200 | fax: (509) 924.9290 | fax: (509) 926.9210 | fax: (509) 9 Portland

Anchorage

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: Project Manager:

ST-SP-001

Thomas Nadermann

Report Created:

11/17/05 16:33

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	<u> Matrix</u>	Date Sampled	Date Received
Composite #1	P5K0128-01	Other wet	10/31/05 12:00	11/01/05 14:10
Composite #2	P5K0128-02	Other wet	10/31/05 13:00	11/01/05 14:10
Composite #3	P5K0128-03	Other wet	10/31/05 14:00	11/01/05 14:10
CB-SB-5	P5K0128-04	Other wet	10/31/05 14:10	11/01/05 14:10
Composite #4	P5K0128-05	Other wet	10/31/05 14:30	11/01/05 14:10
Composite #5	P5K0128-06	Other wet	10/31/05 15:10	11/01/05 14:10
Composite #6	P5K0128-07	Other wet	10/31/05 15:30	11/01/05 14:10

Seattle 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

Spokane East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

9405 SW Mimbus Avenue, Beaverton, OR 97088-7132 phone: (503) 906.9200 fax: (503) 906.9210

Bend 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

chorage 2000 W International Airport Road, Suite A-10, Anchorage, AK 99 phone: (907) 563.9200 fax: (907) 563.9210

Anchorage

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Suizer Pump Project Name:

Project Number: ST-SP-001

Report Created; 11/17/05 16:33

Project Manager: Thomas Nadermann

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method North Creek Analytical - Portland

Diesel Range Organics NWTPH-Dx ND 491 mg/kg wet 40x 5110231 11/04/05 11/05/05 12:38 R-05	Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
Recovery: NR Limits: 50 - 150 % " " " " " " " " " "	P5K0128-01 Other wet	Composite #1		Sample	d: 10/31	/05 12:00					
Surrogate(s): 1-Chlorooctadecane Recovery: NR Limits: 50 - 150 %	Diesel Range Organics	NWTPH-Dx	ND		491	mg/kg wet	40x	5110231	11/04/05	11/05/05 12:38	R-05
PSK0128-02 Other wet Composite #2 Sampled: 10/31/05 13:00	Heavy Oil Range Hydrocarbons	ı)	2190		982	47	. 48	**	H	н	
Diesel Range Organics NWTPH-Dx ND 498 mg/kg wet 40x 5110231 11/04/05 11/05/05 12:38 R-05	Surrogate(s): 1-Chlorooctadecane		Recovery:	NR	Limits:	50 - 150 %	"			п	S-01
Heavy Oil Range Hydrocarbons 2430	P5K0128-02 Other wet	Composite #2		Sample	d: 10/31	/05 13:00					
Surrogate(s): 1-Chlorooctadecane Recovery: NR Limits: 50 - 150 % "	Diesel Range Organics	NWTPH-Dx	ND	*****	498	mg/kg wet	40x	5110231	11/04/05	11/05/05 12:38	R-05
P5K0128-03 Other wet Composite #3 Sampled: 10/31/05 14:00 Diesel Range Organics NWTPH-Dx 2390	Heavy Oil Range Hydrocarbons	ri .	2430		996	H ·	"	11	11	tŧ	
Diesel Range Organics NWTPH-Dx 2390 1270 mg/kg wet 100x 5110231 11/04/05 11/05/05 13:13 A-01	Surrogate(s): 1-Chlorooctadecane		Recovery:	NR	Limits:	50 - 150 %	"			н	S-01
	P5K0128-03 Other wet	Composite #3	•	Sample	d: 10/31	/05 14:00					
Surrogate(s): 1-Chlorooctadecane Recovery: NR Limits: 50 - 150 % " " S-01	Diesel Range Organics	NWTPH-Dx	2390		1270	mg/kg wet	100x	5110231	11/04/05	11/05/05 13:13	A-01
P5K0128-04 Other wet CB-SB-5 Sampled: 10/31/05 14:10 Diesel Range Organics NWTPH-Dx 2020 1270 mg/kg wet 100x 5110231 11/04/05 11/05/05 13:13 A-02 Heavy Oil Range Hydrocarbons " 5050 2530 " " " " " " " " " " " " " " S-01 P5K0128-05 Other wet Composite #4 Sampled: 10/31/05 14:30 Diesel Range Organics NWTPH-Dx ND 1230 mg/kg wet 100x 5110231 11/04/05 11/05/05 13:47 R-05 Heavy Oil Range Hydrocarbons " 3970 2450 " " " " " " " S-01 P5K0128-06 Other wet Composite #5 Sampled: 10/31/05 15:10	Heavy Oil Range Hydrocarbons	ıt	6180		2540	11	11:	O)r	11	
Diesel Range Organics NWTPH-Dx 2020 1270 mg/kg wet 100x 5110231 11/04/05 13:13 A-02 Heavy Oil Range Hydrocarbons " 5050 2530 " " " " " Surrogate(s): I-Chloroctadecane Recovery: NR Limits: 50 - 150 % " S-01 P5K0128-05 Other wet Composite #4 Sampled: 10/31/05 14:30 Diesel Range Organics NWTPH-Dx ND 1230 mg/kg wet 100x 5110231 11/04/05 11/05/05 13:47 R-05 Heavy Oil Range Hydrocarbons 3970 2450 " " " " Surrogate(s): I-Chloroctadecane Recovery: NR Limits: 50 - 150 % " S-01 P5K0128-06 Other wet Composite #5 Sampled: 10/31/05 15:10	Surrogate(s): 1-Chlorooctadecane		Recovery:	NR .	Limits:	50 - 150 %	11			н	S-01
Heavy Oil Range Hydrocarbons " 5050 2530 " " " " " " " " " " " " " " " " " " "	P5K0128-04 Other wet	CB-SB-5	S	ampled: 10	/31/05 1	4:10					
Surrogate(s): 1-Chlorooctadecane Recovery: NR Limits: 50 - 150 % " S-01	Diesel Range Organics	NWTPH-Dx	2020		1270	mg/kg wet	100x	5110231	11/04/05	11/05/05 13:13	A-02
P5K0128-05 Other wet Composite #4 Sampled: 10/31/05 14:30	Heavy Oil Range Hydrocarbons	tl	5050		2530	Ħ	##	п	II .	п	
Diesel Range Organics NWTPH-Dx ND	Surrogate(s): 1-Chlorooctadecane	·	Recovery:	NR	Limits:	50 - 150 %	n			tt	S-01
Heavy Oil Range Hydrocarbons " 3970 2450 " " " " " " " " " " " " " " " " " " "	P5K0128-05 Other wet	Composite #4		Sample	d: 10/31,	/05 14:30					
Surrogate(s): 1-Chlorooctadecane Recovery: NR Limits: 50 - 150 % " " S-01 P5K0128-06 Other wet Composite #5 Sampled: 10/31/05 15:10	Diesel Range Organics	NWTPH-Dx	ND		1230	mg/kg wet	100x	5110231	11/04/05	11/05/05 13:47	R-05
P5K0128-06 Other wet Composite #5 Sampled: 10/31/05 15:10	Heavy Oil Range Hydrocarbons	H .	3970		2450	11	11	I†	19	If	
	Surrogate(s): 1-Chlorooctadecane	·	Recovery:	NR	Limits:	50 - 150 %	n			tt .	S-01
Diesel Range Organics NWTPH-Dx ND 1260 mg/kg wet 100x 5110231 11/04/05 11/05/05 13:47 R-05	P5K0128-06 Other wet	Composite #5		Sample	d: 10/31	/05 15:10					
	Diesel Range Organics	NWTPH-Dx	ND		1260	mg/kg wet	100x	5110231	11/04/05	11/05/05 13:47	R-05

2020

Sampled: 10/31/05 15:30

2520

Limits: 50 - 150 %

Limits: 50 - 150 %

1260 mg/kg wet 100x

2570

Recovery: NR

1750

4390

Recovery: NR

Composite #6

NWTPH-Dx

North Creek Analytical - Portland

Heavy Oil Range Hydrocarbons

Heavy Oil Range Hydrocarbons Surrogate(s): 1-Chlorooctadecane

P5K0128-07

Diesel Range Organics

Surrogate(s): 1-Chlorooctadecane

Other wet

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

5110231 11/04/05

Bean L Come

11/05/05 14:21

S-01

S-01

A-02

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Suizer Pump

Project Number:

ST-SP-001

Report Created:

Project Manager: Thomas Nadermann 11/17/05 16:33

TCLP Metals per EPA 1311/6000/7000 Series Methods

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-01	Other wet	Composite #1		Sampled: 10/31/05 12:00							
Arsenic	*****	1311/6010B	ND		1,00	mg/l	2x	5110362	11/07/05	11/15/05 18:11	,,
Barium		tt	ND		2.00		0.2x	19	9	11/11/05 00:26	
Cadmium			ND		0.200	1f	11	#1	19	н	
Chromium		19	ND		0.200	11	2x	n	Ħ	U	
Copper	•	п	0.387		0.200	19	19	' n	Ħ	ti.	
Lead		11	0.570		0.200	şŧ	P	"	tt	n	
Selenium		u	ND		1.00	#	#1	ď	u	h	
Silver		H	ND		0,200	Ħ	U	11	и	#	
Zinc		降	3,77		0.400	p	12	0	н	B	
25K0128-02	Other wet	Composite #2		Sample	d: 10/31/0	5 13:00					
Arsenic		1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 18:17	
Barium		н .	ND	~~~	2.00	**	0.2x	11	u u	11/11/05 00:33	
Cadmium		H	ND		0.200	0	н	R	n	R	
Chromium		ч	ND		0.200	μ	2x	rė	**	н	
Copper		g	ND		0.200	н	ti	Ħ	e	11	
_ead		II .	0.217		0.200	17	ti	11	и	u,	
Selenium		e e	ND		1.00	11	D	н	п	n	
Silver		H	ND		0.200		10	17	н	и	
Line		п	2,68		0.400	Ħ	п	35	19	11	
P5K0128-03	Other wet	Composite #3		Sampled: 10/31/05 14:00							
Arsenic		1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 18:23	
3arium		11	ND		2.00	H	0.2x	_ 41	H	11/11/05 00:39	
Cadmium		u .	ND		0.200	Ħ	O	11	"	e e	
Chromium		IJ	ND		0.200	11	2x	19	H	14	
Copper		H	ND		0.200	19	И	12	19	н	
ead		ti	ND		0.200	n	- 11	**	W.	. 9	
Selenium		. "	ND		1.00	n	н	"	n	17	
Silver		н	ND		0,200	17	p	n	**		
Zine		n'	4.55		0.400	*1	ti	11	ef .	я	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Becan L Come

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 1115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382,7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

ST-SP-001 Project Number:

Project Manager: Thomas Nadermann

Report Created: 11/17/05 16:33

TCLP Metals per EPA 1311/6000/7000 Series Methods

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-04	Other wet	CB-SB-5	Sa	mpled: 10	/31/05 14	:10					
Arsenic	•	1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 18:30	
Barium		n .	ND	*******	2.00	It	0.2x	11	It.	11/11/05 00:45	
Cadmium		it.	ND		0.200	12	#1	11	и	#	
Chromium		Ħ	ND		0.200	H	2x	a a	И	a	
Copper			ND		0.200	I#	Ħ	n	II	11	
Lead		н	0.347		0.200	t†	ti	11	н	ų	
Selenium		Ħ	ND		1.00	и	a	n	И	11	
Silver		н	ND		0.200	н	IJ	u	н	D:	
Zine		а	19.1		2.00	ш	10x	U	п	11/16/05 11:59	R-02
P5K0128-05	Other wet	Composite #4		Sample	i: 10/31/0	5 14:30			÷		
Arsenic		1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 19:01	
Barium		ų	ND	*****	2.00	11	0.2x	19	fl	11/11/05 00:52	
Cadmium		4I	0.332	*****	0.200	17	U	Iŧ	n	и	
Chromium		1)	ND	*****	0.200	11	2x	13	19 :	п	
Copper		ti .	ND		0.200	**	и	17	10	н -	
Lead		u	0,323		0,200	s†	Ħ	17	15	11	
Selenium		U	ND		1.00	35	19	51	t#	ri .	
Silver		a .	ND		0.200	H	н	51	16	11	
Zinc		d .	13.4		0.400	17	н	Ħ	12	19	
P5K0128-06	Other wet	Composite #5		Sample	1: 10/31/0	5 15:10				·	
Arsenic		1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 19:08	
Barium		U	ND		2.00	ır	0.2x	0	"	11/11/05 00:58	
Cadmium		19	ND		0.200	ti	11		и	17	
Chromium		ii	ND		0.200	11	2x	p	u u	15	
Copper		U	0.509		0.200	n	1)	11	ıı	tŧ.	
Lead		It.	1.39	~****	0.200	II .	н	U	п	12	
Selenium		U	ND	*****	1.00	11	19	It.	"	II .	
Silver		P	ND		0.200	0	н	Iŧ	n) I	
Zinc		17	5,28		0,400	В	19	i e	e e	s	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bream L Come

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: ST-SP-001

Project Manager: Thomas Nadermann

Report Created: 11/17/05 16:33

TCLP Metals per EPA 1311/6000/7000 Series Methods

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-07	Other wet	Composite	#6	Sample	d: 10/31/(5 15:30					
Arsenic		1311/6010B	ND		1.00	mg/l	2x	5110362	11/07/05	11/15/05 19:14	
Barium		14	2.32	~~	2.00	11	0.2x	fi fi	0	11/11/05 01:17	
Cadmium		**	ND		0.200	#1	fl.	u	ir	. 0	
Chromium		a	ND	·	0.200	U	2x	n	н	D	
Copper		0	ND		0.200	It	н	17	41 -	. п	
Lead		14	ND		0.200	"	4	tt	19	11	
Selenium		11	ND		1.00	a	Ħ	0	4	u	
Silver		ti .	ND		0.200	Ħ	IJ	Iŧ	ij	и	
Zinc		H	2.63		0.400	11	n	tt	12	Ħ	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bream L Core

Anchorage

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (425) 420.9210 | fax: (509) 924.9200 | fax: (509) 924.9290 | fax: (907) 563.9210 | fax: (907) 5

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001

Thomas Nadermann

Report Created: 11/17/05 16:33

TCLP Mercury per EPA Methods 1311/7470A

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-01	Other wet	Composite #1		Sampled:	: 10/31/0	5 12:00					
Mercury		1311/7470A	ND	0.0	000200	mg/l	lx	5110390	11/08/05	11/09/05 09:40	
P5K0128-02	Other wet	Composite #2		Sampled:	: 10/31/0	5 13:00					
Mercury		1311/7470A	ND	0.0	000200	mg/l	1x	5110390	11/08/05	11/09/05 09:43	
P5K0128-03	Other wet	Composite #3	Composite #3 Sampled: 10/31/05 14:00								
Mercury		1311/7470A	ND	0.0	000200	mg/l	lx	5110390	11/08/05	11/09/05 09:45	
P5K0128-04	Other wet	CB-SB-5	Sa	mpled; 10/3	31/05 14:	:10					
Mercury		1311/7470A	ND	0.0	000200	mg/l	1x	5110390	11/08/05	11/09/05 09:47	
P5K0128-05	Other wet	Composite #4		Sampled:	: 10/31/0	5 14:30					
Mercury		1311/7470A	ND	0.0	000200	mg/l	1x	5110390	11/08/05	11/09/05 09:49	
P5K0128-06	Other wet	Composite #5		Sampled:	: 10/31/€	5 15:10					
Mercury		1311/7470A	ND	0.0	000200	mg/l	1x	5110390	11/08/05	11/09/05 09:52	
P5K0128-07	Other wet	Composite #6	omposite #6 Sampled: 10/31/05 15:30								
Mercury		1311/7470A	ND	0.0	000200	mg/l	1x	5110390	11/08/05	11/09/05 09:54	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its enlirety.

Becan L Come

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210

 Bend
 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382.7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563.9200 fax: (907) 563.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number:

ST-SP-001

Report Created: 11/17/05 16:33

Project Manager: Thomas Nadermann

Polynuclear Aromatic Compounds per EPA 8270M-SIM

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-01	Other wet	Composite #	<i>‡</i> 1	Sample	d: 10/31/	05 12:00			<u>, </u>		R-05
Acenaphthene		EPA 8270m	ND		0.334	mg/kg wet	10x	5110229	11/04/05	11/09/05 09:54	
Acenaphthylene		II .	ND		0.334	12	"	`#	n	1)	
Anthracene		ø	ND		0.334	11	19	n	17	(1	
Benzo (a) anthrac	cene	19	ND		0,334	0	11	11	R	Ħ	
Benzo (a) pyrene		ti-	ND		0.334	I)	Ħ	н	n	Ħ	
Benzo (b) fluorar	nthene	II	ND		0.334	If	"	tt	#	27	
Benzo (ghi) peryl	lene	n	ND	·	0.334	п	11	ч	11	tt.	
Benzo (k) fluorar	nthene	18	ND		0.334	11	f #	н	II	И	
Chrysene		et .	0,374		0.334	įŧ	11	Pf	n	п	
Dibenzo (a,h) ant	thracene	11	ND		0.334	I)	"	11	н	U	
Fluoranthene		rt	0.524		0.334	11	11	**	19	**	
Fluorene		H	ND		0.334	71	19	υ,	17	17	
Indeno (1,2,3-cd)) pyrene	P	ND		0.334	0	11	11	Ħ	н	
Naphthalene		11	ND		0.334	n	ч	18	a	19	
Phenanthrene		п	ND		0.334	r	n	11	'n	U	
Pyrene		O .	0.487		0.334	tt	H	u	0	Ħ	
Surrogate(s):	Fluorene-d10	Re	covery: 74.0%		Limits:	32 - 134 %	"			#	J
	Pyrene-d10		77.0%	i		41 - 152 %	**				\boldsymbol{J}
	Benzo (a) pyrene-d12		79.2%	i.		36 - 145 %	"			. "	J
P5K0128-02	Other wet	Composite #	#2	Sample	d: 10/31/	05 13 <u>:00</u>					R-05
Acenaphthene		EPA 8270m	ND		0.167		5x	5110229	11/04/05	11/09/05 10:24	
Acenaphthylene		? I			V.107	mg/kg wet	24.		- A		
Accuapamy icue			ND		0.167	mg/kg wet	11	q	11	11	
Anthracene		0	ND ND							H H	
Anthracene	cene				0.167	Ħ	11	u	11		
Anthracene Benzo (a) anthrac		O	ND		0,167 0,167	Ħ	17	11	Œ fř	н	·
Anthracene Benzo (a) anthrac Benzo (a) pyrene	• •	o n	ND ND		0,167 0,167 0,167	ft 11	11 14	11 17	II E	N el	·
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar	nthene	o n	ND ND ND		0.167 0.167 0.167 0.167	PE EE 11	11 11	11 17 18	ft H H	N 11	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl	nthene lene	0 D H	ND ND ND ND		0.167 0.167 0.167 0.167 0.167	R 11 11 14	H H H	11 17 14 11	ft ft ii ft	H 11 12	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar	nthene lene	0 D H U	ND ND ND ND ND		0.167 0.167 0.167 0.167 0.167	Pt	17 11 11 14	11 11 11 11	tt tt	11 11 11 11	·
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene	nthene lene nthene	0 D H U	ND ND ND ND ND ND		0.167 0.167 0.167 0.167 0.167 0.167	H H H H H	11 11 11 14 14	11 17 18 11 11 12	t: t: t: t: t: t:	N 11 11 11 11 11 11 11 11 11 11 11 11 11	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene Dibenzo (a,h) ant	nthene lene nthene	0 10 10 11 10 11	ND ND ND ND ND ND ND		0.167 0.167 0.167 0.167 0.167 0.167 0.167	# 11 11 11 11 11	11 24 11 11 14	() 14 14 11 12 14	(† († 14) († († 14) († († 14) († 14) († († 14) (†	и п п н п	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene Dibenzo (a,h) ant Fluoranthene	nthene lene nthene	0 0 0 11 0 11	ND		0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167	M 11 13 14 15 16 17 18 18 18 18 18 18 18 18 18	11 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	() 19 11 11 12 14	() () () () () () () () () () () () () (N (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene Dibenzo (a,h) ant Fluoranthene Fluorene	nthene Iene nthene thracene	0 0 0 11 0 11	ND 0,213 ND ND		0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167	# # # # # # # #	11 11 11 11 11 11 11 11	()))))))))))))))))))	17 14 15 15 15 15 15 15 15 15 15 15 15 15 15	11 11 11 11 11 11 11 11 11 11 11 11 11	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene Dibenzo (a,h) ant Fluoranthene Fluorene Indeno (1,2,3-cd)	nthene Iene nthene thracene	0 0 0 0 0 0 0	ND N		0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167	# # # # # # # # # # # # # # # # # # #	11 H H H H H H H H H H H H H H H H H H	11 12 14 14 14 14 14 14 14 14 14 14 14 14 14	# # # # # # # # # # # # # # # # # # #	N d d d d d d d d d d d d d d d d d d d	
Anthracene Benzo (a) anthrac Benzo (a) pyrene Benzo (b) fluorar Benzo (ghi) peryl Benzo (k) fluorar Chrysene Dibenzo (a,h) ant Fluoranthene Fluorene	nthene Iene nthene thracene	0 0 11 11 11 12 12 12	ND ND ND ND ND ND ND ND ND O,213 ND ND ND ND		0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167	# # # # # # # # # # # # # # # # # # #	11 H H H H H H H H H H H H H H H H H H	(t)	() () () () () () () () () () () () () (N a u a u a n n n n n	

Limits: 32 - 134 %

41 - 152%

36 - 145 %

Recovery: 81.0%

79.3%

90.1%

North Creek Analytical - Portland

Surrogate(s): Fluorene-d10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brean L Come

Pyrene-d10

Benzo (a) pyrene-d12

Anchorage

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001

Thomas Nadermann

Report Created: 11/17/05 16:33

Polynuclear Aromatic Compounds per EPA 8270M-SIM

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Đil	Batch	Prepared	Analyzed	Notes
P5K0128-03	Other wet	Composi	te #3	Sample	ed: 10/31/(5 14:00					R-0
Acenaphthene		EPA 8270m	ND	,	0,330 r	ng/kg wet	10x	5110229	11/04/05	11/09/05 10:55	<u>-</u>
Acenaphthylene		#	ND		0.330	n	п	17	II.	и	
Anthracene			ND		0.330	11	"	te	It	t\$	
Benzo (a) anthrace	ene	Ħ	ND		0.330	ŧı	H	†I)t	Ħ	
Benzo (a) pyrene		ti ti	ND		0.330	ti	I#	11	#1	tz	
Benzo (b) fluorant	hene	0	ND		0.330	a a	11	11	*1	n	
Benzo (ghi) peryle		n ·	ND	*****	0,330	II.	17	U	O.	n	
Benzo (k) fluorant		п	ND		0.330	n	#}	H	В	0	
Chrysene		В	ND		0.330	15.	tt	js	If	D.	
Dibenzo (a,h) anth	racene	II.	ND		0.330	Ħ	0	**	n.	D	
Fluoranthene		н	0,500		0.330	11	0	81 ·	н	H	
Fluorene		11	ND		0.330	11	11	tr	11	tt	
Indeno (1,2,3-cd) p	oyrene	u u	ND		0.330	g	18	D.	q	я	
Naphthalene	-	O.	ND		0.330	В	11	0	tž	11	
Phenanthrene		U	0,398		0.330	şŧ	ti	u	I\$	tf	
Pyrene		l#	0,453		0.330	11	11	14 -	IF	15	
Surrogate(s): F	luorene-d10		Recovery: 74.5%	6	Limits: 3	32 - 134 %	"			"	J
	yrene-d10			VR	4	11 - 152 %	"			"	S-02
В	enzo (a) pyrene-d12		111%	ó		36 - 145 %	"			"	

P5K0128-04	Other wet	CB-SB-5	Sar	npled: 10	0/31/05 1	4:10					R-05
Acenaphthene		EPA 8270m	0.747		0.331	mg/kg wet	10x	5110229	11/04/05	11/09/05 11:25	
Acenaphthylene		II.	ND		0.331	Ħ	Ħ	*	H	n	
Anthracene		Ħ	1.06		0.331	đ	n	\$1	н	u	
Benzo (a) anthracen	e	11	0.780		0.331	D.	11	n	†I	п	
Benzo (a) pyrene		я	ND		0.331	. 9	14	0	n	11	
Benzo (b) fluoranthe	ene	u .	0.517		0,331	18	11	0	19	•	
Benzo (ghi) perylene		O .	ND		0,331	H	а	R	н	Iŧ	
Benzo (k) fluoranthe	ene	н	0,367		0.331	, 41	' u	H	R	IF	
Chrysene		(1	1.05		0.331	ıı.	U	tf	If	12	
Dibenzo (a,h) anthrac	ene	4	ND		0.331	11	12	11		11	
Fluoranthene		18	4.33		0.331	н	IF	11:	41	*1	
Fluorene		H	1,31		0.331	Iţ	Ð	ď	11	u	
Indeno (1,2,3-cd) pyro	ene	an and	ND		0.331	11	57	0	11	ų	
Naphthalene		+1	0.355		0.331	st.	ŧI	tt.	n	и	
Phenanthrene		· #	6,08		0.331	ts.	11	17	IŘ	н	
Pyrene		U	3.22		0,331	tl	0	**	н	н	
Surrogate(s): Fluor	rene-d10		Recovery: 86,7%		Limits:	32 - 134 %	"			и	\overline{J}
Pyrei	ne-d10		N	IR		41 - 152%	"			n	S-02

36 - 145 %

114%

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bean L Come

Benzo (a) pyrene-d12

North Creek Analytical, Inc. Environmental Laboratory Network

Method

Anchorage

Batch Prepared

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Analyte

Sulzer Pump Project Name:

Project Number: ST-SP-001

MRL

Thomas Nadermann

Units

Dil

Report Created: 11/17/05 16:33

Notes

Analyzed

Polynuclear Aromatic Compounds per EPA 8270M-SIM

Project Manager:

Result

North Creek Analytical - Portland

MDL*

Analyte		MCHOO	Result	MDL.	MIKI	Units	Dit	ватец	Prepareu	Anaiyzea	NOU	es
P5K0128-05	Other wet	Composite #	4	Sample	d: 10/31/(05 14:30	-					R-05
Acenaphthene		EPA 8270m	ND		0.330 г	ng/kg wet	10x	5110229	11/04/05	11/09/05 11:56		
Acenaphthylene)	U .	ND		0.330	D	O	11	ú	11		
Anthracene		D	ND		0.330	н	n	II	!!	st		
Benzo (a) anthi	racene	11	0.488		0.330	II	R	II II	ŧI	Ħ		
Benzo (a) pyrei	ne	11	0.458	~~~~	0.330	19	#1	53	Ħ	81		
Benzo (b) fluor	anthene	U	0.580		0.330	17	11	**		U		
Benzo (ghi) per	ylene	n	ND		0.330	n	tı	n	н			
Benzo (k) fluor	anthene	ft	0.422	*****	0.330	Ð	Ħ	II	11	Ħ		
Chrysene		II	0.749		. 0,330	lt .	u.	17	9	11-		
Dibenzo (a,h) as	nthracene	ti	ND		0.330	18	II .	n	t†	11		
Fluoranthene		U	1.55		0.330	11	O	a	IJ	IP		
Fluorene		12	ND		0.330	11	15	H	ti	11		
Indeno (1,2,3-co	d) pyrene	н	ND	*****	0,330	0	#1	13	II.	ti		
Naphthalene		11	ND	~~~	0.330	If	11	87	I+	11		
Phenanthrene		9	1.15		0.330	ŧı	н	O	М	ĸ		
Pyrene		t) _	1.43		0.330	U	e	n	11	н		
Surrogate(s):	Fluorene-d10	Re	covery: 72.1%	í	Limits: 3	32 - 134 %	"			11	J	
	Pyrene-d10		1	√R	4	41 - 152%	11			"	S-02	
	Benzo (a) pyrene-d12		109%	;	ž	36 - 145 %	"			"		
P5K0128-06	Other wet	Composite #	5	Sample	ed: 10/31/0)5 15:10				•		R-05
Acenaphthene		EPA 8270m	ND		0.167 t	ng/kg wet	5x	5110229	11/04/05	11/09/05 12:26		
Acenaphthylene	•	(1	ND		0.167	u u	13	n	่ ม	н		
Anthracene		. #	ND		0.167	11	13	n	11	11		
Benzo (a) anthra	acene	H	ND		0.167	#	ŧI	\$1	17	19		
Benzo (a) pyre		н	0.175		0.167		U	n	н	1†		
Benzo (b) fluor		Ð	0,219		0.167	19	н	н	tt	11		
Benzo (ghi) per		Ħ	ND		0.167	D	Ħ	ส	n	U		
	-											

Benzo (a) pyrene	71	0.175		0.167 "	"	0	н	It	
Benzo (b) fluoranthene	ti	0.219		0.167 "	H	н	tt	1I	
Benzo (ghi) perylene	Iŧ	ND		0.167 "	Ħ	ส	D	II.	
Benzo (k) fluoranthene	H	0.190		0.167 "	u	ti	н	It	
Chrysene	11	0,294	~~~~	0.167 "	n	11	u	fi	
Dibenzo (a,h) anthracene	11	ND		0.167 "	#	†1	"	11	
Fluoranthene	B	0.372		0.167 "	1)	Ħ	l?	**	-
Fluorene	fl	ND		0.167	11	u	FÌ	Ħ	
Indeno (1,2,3-cd) pyrene	n	ND		0.167 "	12	· · ·	**	я	
Naphthalene	O.	ND		0.167	н	Ħ	"	tt	
Phenanthrene	н	0.255		0.167	11	Ħ	н	11	
Pyrene	Ħ	0,378	~~~	0.167 "	11	u	П	И	
Surrogate(s): Fluorene-d10		Recovery: 72.4%		Limits: 32 - 134	4% "			п	
Pyrene-d10		81.1%		41 - 152	2% "			H	

36 - 145 %

92.8%

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Becan L Come

Benzo (a) pyrene-d12

| Seattle | 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 | phone: (425) 420.9200 | fax: (425) 420.9210 | Spokane | Sast 11.115 Montgomery, Suite B, Spokane, WA 99206-4776 | phone: (509) 924.9200 | fax: (509) 924.9290 | Portland | 9405 SW Mimbus Avenue, Beaverton, OR 97008-7132 | phone: (503) 906.9200 | fax: (503) 906.9210 | Sast 2 Empire Avenue, Suite F-1, Bend, OR 97701-5711 | phone: (541) 383.9310 | fax: 541.382.7588 | 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 | phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9200 | fax: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (907) 563.9210 | Sast 2 Company Suite A-10, Anchorage, AK 99502-1119 | Phone: (

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: ST-SP-001

Project Manager: Thomas Nadermann Report Created: 11/17/05 16:33

Polynuclear Aromatic Compounds per EPA 8270M-SIM

North Creek Analytical - Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
P5K0128-07	Other wet	Composi	te #6	Sample	ed: 10/31/0)5 15:3 0					R-05
Acenaphthene		EPA 8270m	ND		0.133 r	ng/kg wet	4x.	5110229	11/04/05	11/09/05 12:57	
Acenaphthylene		u	ND		0.133	u	11	51	39	, H-	
Anthracene		Ħ	ND		0.267	н	8x	11	н	11/09/05 14:28	R-03
Benzo (a) anthrace	ene	н	ND		0.133	u	4x	Ħ	11	11/09/05 12:57	
Benzo (a) pyrene		19	ND		0.267	В	8x	п	P	11/09/05 14:28	R-03
Benzo (b) fluorant	hene	e e	ND		0.267	12	u	u	B	n	R-03
Benzo (ghi) peryle		IŞ	ND		0,267	H	п	0	ÌΤ	σ	R-03
Benzo (k) fluorant		н	ND		0,267	11	4	0.	n	re .	R-03
Chrysene		н	ND		0.133	11	4x	и .	11	11/09/05 12:57	
Dibenzo (a,h) anth	racene	15	ND		0.267	q	8x	11	\$I	11/09/05 14:28	R-03
Fluoranthene		18	0,167		0.133	R	4x	If	q	11/09/05 12:57	
Fluorene		8f	ND		0.267	ø	8x	H	Ŋ.	11/09/05 14:28	R-03
Indeno (1,2,3-cd)	ovrene	អ	ND		0.267	n	45	11	n	st	
Naphthalene		11	ND		0.133	0	4x	11	. 17	11/09/05 12:57	
Phenanthrene		ti .	0.528		0,133	ŧ1	n ·	ø	It	n n	
Pyrene		0	0,307		0.133	ŧı	п	11:	и	U	
Surrogate(s): F	luorene-d10		Recovery: 83.7%	•	Limits: 3	32 - 134 %	"			"	
P	yrene-d10		N	'R	4	11 - 152 %	"			"	S-02
В	enzo (a) pyrene-d12		150%		3	86 - 145 %	8x			11/09/05 14:28	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document, This analytical report must be reproduced in its entirety.

Bream L Come

Anchorage

Extracted: 11/04/05 14:00

38.2% "

Sterling Technologies, LLC

Surrogate(s): 1-Chlorooctadecane

Surrogate(s): 1-Chlorooctadecane

Duplicate (5110231-DUP2) Diesel Range Organics

Heavy Oil Range Hydrocarbons

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: ST-SP-001

Project Manager: Thomas Nadermann

Report Created: 11/17/05 16:33

11/05/05 12:04

11/05/05 12:04

11/05/05 12:04

S-01

R-05

S-01

Diesel and	Heavy Rang	<u>e Hydroc</u>			H-Dx Me			orato	y Qu	ality C	ontr	ol Re	<u>sults</u>	
QC Batch: 5110231	Soil P	reparation	· · · · · · · · · · · · · · · · · · ·	······································		, tian								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limi	ts) Analyzed	Notes
Blank (5110231-BLK1)								Ext	racted:	11/04/05	14:00			
Diesel Range Organics	NWTPH-Dx	ND		12.5	mg/kg	lx				_			11/05/05 10:55	
Heavy Oil Range Hydrocarbons	P	ND		25.0	н	16							"	
Surrogate(s): 1-Chlorooctadecan	пе	Recovery:	111%	Lim	its: 50-150%	"		-					11/05/05 10:5	5
LCS (5110231-BS1)								Ext	racted:	11/04/05	i 14:00			
Diesel Range Organics	NWTPH-Dx	127		12.5	mg/kg	lx		125	102%	(50-150)			11/05/05 11:30	
Heavy Oil Range Hydrocarbons	10	70.1		25.0	n			75.0	93.5%	11	••		п	
Surrogate(s): 1-Chlorooctadecan	ie	Recovery:	94.4%	Lim	its: 50-150%	"							11/05/05 11:30	
Duplicate (5110231-DUP1)				QC Sour	e: P5K0128	-01		Ext	racted:	11/04/05	14:00			
Diesel Range Organics	NWTPH-Dx	ND		505	mg/kg wet	40x	ND		_		NR	(50)	11/05/05 12:04	R-0:
Heavy Oil Range Hydrocarbons	я	2690		1010	и	u	2190	**	-		20.59	% "	11	

Limits: 50-150%

QC Source: P5K0128-02

Limits: 50-150%

mg/kg wet

ND

2430

509

1020

NR

Recovery:

ND

1650

Recovery:

NWTPH-Dx

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bream L Come

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: ST-SP-001

Project Manager: Thomas Nadermann

Report Created: 11/17/05 16:33

TCLP Metals per EPA 1311/6000/7000 Series Methods - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 5110362	Other	wet Prepara	tion Meti	od: EP.	A 1311/3	3005								
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (5110362-BLK1)								Ext	racted:	11/07/05	14:18			
Arsenic	1311/6010B	ND		1.00	mg/l	2x							11/15/05 17:38	
Barium	3)	ND		2.00		0.2x	-			••			11/10/05 23:41	
Cadmium	11	ND		0.200		11							n	
Chromium	11	ND		0.200	u	2x				**			n	
Copper	Ü	ND	***	0.200	n						_		н	
Lead	0	ND	***	0.200	н			-				-	31*	
Selenium	n	ND	***	1.00		71							11	
Silver	н	ND	***	0.200	π.	"							"	
Zinc	н	ND	***	0.400	ır	n	~~						U	
LCS (5110362-BS1)								Ext	racted:	11/07/05	14:18			
Arsenic	1311/6010B	2.58		1.11	mg/l	2x		2.21	117%	(75-125)		1	1/15/05 17:44	
Barium '	п	1.04		2.22	U	0.2x		1.11	93.7%				1/11/05 00:01	
Cadmium	, "	0.403		0.222	υ.	**		0,444	90.8%	n			u	
Chromium	н	1.02		0.222	n	2x		1:11	91.9%	n			н	
Copper	n	0.976		0.222	н	15		n	87.9%	H			II .	
Lead	n	1.99		0.222	4	19		2.22	89.6%	4			n	
Selenium	P	2.05		1.11		,,		D.	92.3%	7			H	
Silver	я .	0.991		0.222				1.11	89.3%				*	
Zine	11	1.05		0.444	п	u		*	94.6%	9			**	•
Matrix Spike (5110362-M	(S1)			QC Source	: P5J006	5-14		Ext	racted:	11/07/05	14:18			
Arsenic	1311/6010B	2.61		1.11	mg/l	2x	ND	2.21	118%	(50-150)		1	1/15/05 17:57	
Barium	1)	1.37	***	2.22	17	0.2x	0.341	1.11	92.7%	**		1	1/11/05 00:13	
Cadmium	11	0.400	***	0,222	•	17	0,000693	0.444	89.9%	#			II .	
Chromium	ir	1.04		0.222	થ	2x	0.0167	1.11	92.2%	**			n	
Copper	H	1.02		0.222	a	п	ND	n.	91.9%				N	
Lead	и	2.24		0.222	o		0.261		89.1%	и			11	
Selenium	11	2.06		1.11	0	,,	ND	10	92.8%					
Silver	41	1.01		0.222		11	ND	1.11	91.0%	н			н	
Zinc	п	1.07		0.444	в	19	0.0536	"	91.6%	,,			,,	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brean L Come

 Seattle
 11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420,9200 fax: (425) 420.9210

 Spokane
 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924,9200 fax: (509) 924,9290

 Portland
 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906,9200 fax: (503) 906,9210

 Bend
 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383,9310 fax: 541,382,7588

 Anchorage
 2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685

Sulzer Pump Project Name:

Project Number: ST-SP-001

Project Manager:

Thomas Nadermann

Report Created: 11/17/05 16:33

	TCLP Mercur	y per EPA	:	s <u>1311/74′</u> reek Analy				Duality Con	itrol Re	sults	:		
QC Batch: 5110390	Other	dry Prepara	ition Met	hod: EPA	1311/7	470A							
Analyte	Method	Result	MDL*	MRL'	Units	Dil	Source Result	Spike % Amt REC	(Limits)	% RPD	(Limit	s) Analyzed	Note
Blank (5110390-BLK1)								Extracted:	11/08/05	09:34			,
Mercury	1311/7470A	ND		0.000200	mg/l	lx				***		11/09/05 09:10	
LCS (5110390-BS1)								Extracted:	11/08/05	09:34			
Mercury	l311/7470A	0.00499		0.000200	mg/l	lx		0.00500 99.8%	(75-125)			11/09/05 09:13	
LCS Dup (5110390-BSD)	n							Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00517	~	0.000200	mg/l	1x	-	0.00500 103%	(75-125)	3.54%	6 (20)	11/09/05 09:16	
Matrix Spike (5110390-N	4S1)			QC Sources	P5K0128	-01		Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00518	444	0.000200	mg/i	1x	ND	0.00500 104%	(50-150)			11/09/05 09:18	
Matrix Spike (5110390-M	1S2)			QC Source:	P5K0128	3-02		Extracted:	11/08/05	09:34			
Mercury	- 1311/7470A	0.00533		0.000200	mg/l	lx	ND	0.00500 107%	(50-150)			11/09/05 09:21	
Matrix Spike (5110390-N	4 S3)			QC Source:	P5K0128	3-03		Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00546		0.000200	mg/l	lx	0.0000631	0.00500 108%	(50-150)			11/09/05 09:23	
Matrix Spike (5110390-N	(S4)			QC Source:	P5K0128	3-04		Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00517		0.000200	mg/l	1x	ND	0.00500 103%	(50-150)			11/09/05 09:26	
Matrix Spike (5110390-M	4S5)			QC Source:	P5K0128	8-05		Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00536		0.000200	mg/l	lx	ND	0.00500 107%	(50-150)			11/09/05 09:28	
Matrix Spike (5110390-N	4S6)			OC Source:	P5K0128	8-06		Extracted:	11/08/05	09:34			
Mercury	1311/7470A	0.00502		0.000200	mg/l	lx	ND	0.00500 100%				11/09/05 09:31	
Matrix Spike (5110390-N	4S7)			OC Source:	P5K012	3-07		Extracted:	11/08/05	09:34		~	
Mercury	1311/7470A	0.00507		0.000200	mg/l	1x	ND	0.00500 101%				11/09/05 09:33	_

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Bream L Come

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street Vancouver, WA 98685 Project Number: Project Manager: ST-SP-001

Thomas Nadermann

Report Created: 11/17/05 16:33

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 5110229	Soil F	reparation	Method:	EPA 355	0									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Lim	its) Analyzed	Notes
Blank (5110229-BLK1)								Ext	racted	: 11/04/05	09:55		·	
Benzo (e) pyrene	EPA 8270m	ND		0.0133	mg/kg	1x							11/05/05 00:15	P-04
Acenaphthene	ii.	ND		0.0133	II	н							n	
Acenaphthylene	II .	ND		0.0133	II	11							u	
Anthracene	ч	ND		0.0133	11								II .	
Benzo (a) anthracene	H	ND		0.0133	. "	"							ч	
Benzo (a) pyrene		ND		0.0133	H)1		-					н	
Benzo (b) fluoranthene	n	ND	***	0.0133	"	и				-			n	
Benzo (ghi) perylene	н	ND	•••	0.0133	н	11	-		-	-			n	
Benzo (k) fluoranthene	в	ND	***	0.0133	n	11							*	P-03
Chrysene	n	ND	***	0.0133	10	"					·		»	
Dibenzo (a,h) anthracene	19	ND		0.0133	#	*				-			ਜ਼	
Fluoranthene	и	ND		0.0133	**	26 -		·				_	a	
Fluorene	н	ND		0.0133	u	ŧ		**				**	a	
Indeno (1,2,3-cd) pyrene	4	ND		0.0133	11	н		***					n ·	
Naphthalene	u·	ND		0.0133	я	и	**	**						
Phenanthrene	ч	ND		0.0133			~-	***					n	
Pyrene	v	ND		0.0133		u		**					n	
Surrogate(s): Fluorene-d10	· · · · ·	Recovery:	85.8%	Limi	ts: 32-134%	н							11/05/05 00:15	7
Pyrene-d10			93.6%		41-152%	rt							н .	
Benzo (a) pyrene	-d12		97.2%		36-145%	"							"	
Blank (5110229-BLK2)								Extr	acted:	11/04/05	15:30			
Acenaphthene	EPA 8270m	ND		0.0133	mg/kg	1x	-			_			11/08/05 11:42	
Acenaphthylene	•	ND	***	0.0133	**	**							u	
Anthracene	n	ND	***	0.0133	"	41							п	
Benzo (a) anthracene	н	ND		0.0133	"	11					_		п	
Benzo (a) pyrene		ND		0.0133	a	"							n	
Benzo (b) fluoranthene	*	ND	~**	0.0133		я			_				H	
Benzo (ghi) perylene	н	ND		0.0133		н							*	
Benzo (k) fluoranthene	4	ND		0.0133		,	-m						**	
Chrysene	4	ND		0,0133	Ð	н							14	
Dibenzo (a,h) anthracene	n	ND		0.0133	н .	н							74	
Fluoranthene	u	ND		0.0133	n	n							п	
Fluorene		ND		0.0133	n	n	-						u	
Indeno (1,2,3-cd) pyrene	"	ND		0.0133	. #	,								
Naphthalene	n	ND		0.0133	H	10			<u>:-</u>	_			u	
Phenanthrene	n	ND		0.0133	Ħ	at.							н	
Pyrene	n	ND	***	0.0133	а	16							U	
Surrogate(s): Fluorene-d10		Recovery:	69.0%	Limi	ts: 32-134%	n							11/08/05 11:42	<u> </u>
Pyrene-d10			70.5%		41-152%	*							"	
Benzo (a) pyrene-	-d12		79.3%		36-145%	H							"	

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Becan L Come

North Creek Analytical, Inc. Environmental Laboratory Network

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Suizer Pump

Project Number: Project Manager: ST-SP-001

Thomas Nadermann

Report Created: 11/17/05 16:33

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

North Creek Analytical - Portland

QC Batch: 5110229	Soil F	Preparation	Method:	EPA 3550										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
LCS (5110229-BS1)								Ext	racted:	11/04/05	09:55			Q-32
Acenaphthene	EPA 8270m	0.150		0,0134	mg/kg	lx		0.166	90.4%	(33-139)]	1/05/05 00:45	101111
Benzo (a) pyrene	ч	0.179		0.0134	#	o		F	108%	(45-149)	٠		4	
Pyrene		0.153		0.0134	1)	b		п	92.2%	(39-138)			"	
Surrogate(s): Fluorene-d10		Recovery:	84.4%	Limits	: 32-134%	"							11/05/05 00:45	····
Pyrene-d10			93.5%		41-152%	19							"	
Benzo (a) pyrene-c	112		102%		36-145%	#							#	

Portland

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8244 phone: (425) 420.9200 fax: (425) 420.9210 East 11115 Montgomery, Suite B, Spokane, WA 99206-4776 phone: (509) 924.9200 fax: (509) 924.9209 9405 SW Nimbus Avenue, Beaverton, OR 97008-7132 phone: (503) 906.9200 fax: (503) 906.9210 2032 Empire Avenue, Suite F-1, Bend, OR 97701-5711 phone: (541) 383.9310 fax: 541.382,7588

2000 W International Airport Road, Suite A-10, Anchorage, AK 99502-1119 phone: (907) 563,9200 fax: (907) 563,9210

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street

Project Number:

ST-SP-001

Report Created: 11/17/05 16:33

Vancouver, WA 98685

Project Manager: Thomas Nadermann

Notes and Definitions

Report Specific Notes:

A-01 The detected hydrocarbons appear to be due to weathered, heavy gas/light diesel components, and heavy/oil range overlap.

A-02 Detected hydrocarbons appear to be due mainly to overlap from the heavy/oil range; however, there is diesel detected as well.

Estimated value.

P-03 Benzo(j)fluoranthene coelutes with Benzo(k)fluoranthene. The reported result is a summation of the isomers and the concentration is based on the response factor of Benzo(k)fluoranthene

P-04 Benzo(e)pyrene concentration is based on the response factor of Benzo(a)pyrene, and has not been calibrated independently.

No results were reported for the MS and or MSD. The sample used for the MS/MSD required dilution due to the sample matrix. Q-32 Because of this, the spike compounds were diluted below the detection limit.

R-02 The reporting limit for this analyte was raised due to the high analyte concentration present in the sample.

The reporting limit for this analyte was raised due to matrix interference. R-03

R-05 Reporting limits raised due to dilution necessary for analysis. Sample contains high levels of reported analyte, non-target analyte, and/or matrix interference.

S-01 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.

S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present.

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

- Sample results reported on a dry weight basis. Reporting Limits have been corrected for %Solids. dry

- Sample results and reporting limits reported on a wet weight basis (as received). wet

RPD Relative Percent Difference. (RPDs calculated using Results, not Percent Recoveries).

<u>MRL</u> METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. MDL* *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated results.

<u>Dil</u> Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and limits percent solids, where applicable.

North Creek Analytical - Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety

Bran L Come

North Creek Analytical, Inc. Environmental Laboratory Network

Brian Cone, Industrial Services Manager

Page 16 of 16

11720 North Creek Pkwy N, Suite 400, Bothell, WA 98011-8223 East 11115 Montgomery, Suite B. Spokane, WA 98206-4776 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 20332 Empire Avenue, Suite F-1, Bend, OR 97701-5711

(425) 420-9200 FAX 420-9210 (509) 924-9200 FAX 924-9290 (503) 906-9200 FAX 906-9210

(541) 383-9310 FAX 382-7588

www.acalabs.com	СНА	IN (OF (CUS	ТО	DY	RE	PO	RT			Wo	rk ()rd	er#:	De	5K (512	C	
CLIENT: Tering	Technologie	٧,			INVO	ICE TO);						-		TURN	IAROUNI	REQUI	eST in Busin	ness Da	ys*
					1												ic & Inorga	mic Analyses		,,
ADDRESS: 317 N	& Tarviorogies				<<	へむだ	Lor	4	CC	nno	بحد	1185					4	3 2	1	<1
Characa	wer a 8685	•													STD.			rbon Analyses 2 1		1
PROJECT NAME: SUCH Y	6231 FAX:				P.O. N	UMBE		ED AN	AT VCD	·e					ST	السسة كير	د سنگسر	السعدا السند	<u> <1</u>	1
PROJECT NUMBER:	SELL CLOCK CHARLE	-	J 6	<u> </u>	1	KE	ν (COES) Ι	EDAN.	11135	<u> </u>	1				31,	ОТН		ase Specify		
	lers e	,	7)]	}		1	1		Ì		*Turnam	<u> </u>		sdard may becur i	Rusk Cha	rves.
SAMPLED BY: D. Galace	SAMPLING	12 8	(Se 2)	۽ آ				1							MATRIX	#OF				NCA WO
	= = =	五 元 次	123	ME					i							CONT.	~	OMMENTS		NCA WO
IDENTIFICATION	DATE/TIME	2	15	P	 			ļ	 	 	 	 			(₩, S, O)			WINGN15		10
1 Composite #1	2.3	X		<u> </u>				<u> </u>		 	ļ				Sindage	2				
2 Conposib #2	MA PM	X	一×	X												2				
3. Composite #3	lotalise goom	\times	X	X			<u> </u>			<u> </u>						2				
4.CB-5B-5	10/31/26 210	X	X	X												2				
5. Composib #4	28 3 20	X	X	X					·							2				
6. Composite #5	10-31-05 3:10	X	X	X	,											2				
7. Composite the	1031-05 3.30	X	X	X											b	3				
8.											·							7		
9.				Į.													***************************************			
10.															•			-		
11.															·					
12.																				
13.															,					
14.																				
15.												7		0//	-					
RELINQUISHED BY:	(Vezzoni.				DATE:	10-3	-05	RECE	AED B	¥//	Ų	Uz		7	. 2	10		آ~۾	DÁ IB : 🗸	77-7
PRINTNAME: (New)	122ani FIRM: S	ster!	محر	·		4:1	0		NAME	_	1/4	HJX.	C84	6/4	LEIRM:	NO	4		TEME: ,	<i>&</i>
RELINQUISHED BY: PRINT NAME:	FIRM:		~	3	DATE: TIME:			I	NAME			(FIRM:				DATE: TIME:	:
ADDITIONAL REMARKS:	ATRAL				I III-AE.			LEHAI	TAME	•				·- - ··	FIRM:		T			· -
COC REV 3/99						-											\ \frac{1}{2}	7 7	PAGE	OF

NORTH CREEK ANALYTICAL COOLER RECEIPT FORM

Client: SHOWS tech (Army Corp. Compliant)
1. Please sign for receipt and opening of cooler or other
By (print) MOVONICK (sign) Was
2. Date samples received // / O Date opened: Same or // /
3. Delivered by: NCA courier FedExUP Courier Client Other
Airbill # if applicable(Put copy of shipping papers in file)
4. There were custody seals present, signed by Verran (date 4) B/ 105.
5. Were the custody seals unbroken and intact at the date and time of arrival? YesNo
6. Was ice used?
7. Are custody papers sealed in a plastic bag and taped inside to lid? Yes No
8. Were custody papers filled out properly (ink, signed, etc.)? Yes No If "no" please specify:
9. Was project identifiable from custody papers? No Name of project Color (if applicable) 10. Initial and date for unpacking: (F (initials) date 11.2105
10. Initial and date for unpacking: (The (initials) date 11/2/05
11. Packing material: !\(\frac{\lambda}{\circ}\) bubble wrap/bagstyrofoamcardboardother
12. Were samples in bags? Yes Yes You
13. Did all containers indicated on the COC arrive? Yes No
If "no" please indicate which containers were absent
14. Were all containers unbroken and labels in good condition? If "no" please indicate which containers
15. Were all bottle labels complete (ID, date, time, signature, etc.)? Yes No
Do the IDs, times, etc. agree with the COC?
If "no" please indicate which containers Times Cent Match - colly con
16. Are containers properly preserved for indicated analysis?
17. Is there adequate volume for the test(s) requested? Yes No
17. Is there adequate volume for the test(s) requested? Yes No
17. Is there adequate volume for the test(s) requested? Yes No 18. If voa vials were submitted, are they free of bubbles? NA Yes No

		•			
•					
					!
					į
					4
•					•
	•				
		÷			
		•			
					ŧ
				-	
					,
					;
		•			
					•
					:
					•

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

May 23, 2006

Thomas Nadermann Sterling Technologies, LLC 317 NE 144th Street Vancouver, WA 98685

RE: Sulzer Pump

Enclosed are the results of analyses for samples received by the laboratory on 05/08/06 12:30. The following list is a summary of the Work Orders contained in this report, generated on 05/23/06 17:17.

If you have any questions concerning this report, please feel free to contact me.

Work Order Project
PPE0302 Sulzer Pump

ProjectNumber ST-SP-001

TestAmerica - Portland, OR

Bean L Come
Brian Cone, Industrial Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 5,W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street

Vancouver, WA 98685

Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
CB-1	PPE0302-01	Water	05/07/06 10:06	05/08/06 12:30
CB-5	PPE0302-02	Water	05/07/06 10:50	05/08/06 12:30
CB-6	PPE0302-03	Water	05/07/06 10:25	05/08/06 12:30
SD-2	PPE0302-04	Water	05/07/06 09:55	05/08/06 12:30
Outfall-C	PPE0302-05	Water	05/07/06 09:23	05/08/06 12:30
H2O Storage Tank	PPE0302-06	Water	05/07/06 10:50	05/08/06 12:30
CB-17	PPE0302-07	Water	05/07/06 11:25	05/08/06 12:30
CB-15	PPE0302-08	Water	05/07/06 12:12	05/08/06 12:30

TestAmerica - Portland, OR

Becan L Come

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	· Dil	Batch	Prepared	Analyzed	Notes
PPE0302-01 (CB-1)		Wa	ter		Sam	pled: 05/	07/06 10:06			
Diesel Runge Organics	NWTPH-Dx	1.24		0.248	mg/i	lx	6050507	05/11/06 13:50	05/15/06 14:21	D-1
Heavy Oil Range Hydrocarbons	п	3.89		0.495	14	11		11	"	
Surrogate(s): 1-Chlorooctadecane			65.3%		50	- 150%	"		H	
PPE0302-02 (CB-5)		Wa	ter		Sam	pled: 05/	07/06 10:50			
Diesel Range Organics	NWTPH-Dx	2.41		0.238	mg/l	1 x	6050507	05/11/06 13:50	05/12/06 21:53	D-1
Heavy Oil Range Hydrocarbons	"	1,24		0.476		"	"		π	D-1
Surrogate(s): 1-Chloropotadecane			60.5%		50	- 150%	ų		u	
PPE0302-03 (CB-6)		Wa	ter	٠	Sam	pled: 05/	07/06 10:25			
Diesel Range Organics	NWTPH-Dx	1.52		0.240	mg/l	1x	6050507	05/11/06 13:50	05/12/06 22:27	D-1
Heavy Oil Range Hydrocarbons	n	1.80		0,481		H	U	a	"	D-1
Surrogate(s): 1-Chlorooctadecane			66.2%		50	- 150%	ij		n	
PPE0302-04 (SD-2)		Wa	ter		Sam	pled: 05/	07/06 09:55			
Diesel Range Organics	NWTPH-Dx	2.86		0.238	mg/l	lx	6050507	05/11/06 13:50	05/13/06 00:10	D-1
Heavy Oil Range Hydrocarbons		1.72		0.476		н	u	и.	и	D-1
Surrogate(s): I-Chloroactadecane			59.4%		50	- 150%	t	<u></u>	n	
PPE0302-05 (Outfall-C)		Wa	ter_		Sam	pled: 05/	07/06 09:23	-		
Diesel Range Organics	NWTPH-Dx	0.866		0,243	mg/l	1x	6050507	05/11/06 13:50	05/13/06 00:44	D-1
Heavy Oil Range Hydrocarbons	я	0.571	*****	0,485	**	"	. "	*	o o	D-1
Surrogate(s): 1-Chlorooctadecane			55.0%		50	- 150%	н	///	н	
PPE0302-06 (H2O Storage Tank)		Wa	ter		Sam	pled: 05/	07/06 10:50			
Diesel Range Organics	NWTPH-Dx	2.12		0.238	mg/l	1x	6050507	05/11/06 13:50	05/13/06 01:18	D-1
Heavy Oil Range Hydrocarbons	н	1.50		0.476	n	**	#	н	11	D-1
Surrogate(s): 1-Chlorooctadecane			75.2%		50	- 150%	"		ø	
PPE0302-07 (CB-17)		Wa	ter		Sam	pled; 05/0	07/06 11:25			
Diesel Range Organics	NWTPH-Dx	ND		0.248	mg/l	ix	6050507	05/11/06 13:50	05/13/06 01:52	· · · · · · · · · · · · · · · · · · ·
Heavy Oil Range Hydrocarbons	н	0.524		0.495	u	н	н	н	16	D-0
Surrogate(s): 1-Chlorooctadecane			66.8%		50	- 150%	ır		"	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Becan L Corre

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph; (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump ST-SP-001

Project Number: Project Manager:

Thomas Nadermann

Report Created:

05/23/06 17:17

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method

TestAmerica - Portland, OR

					· /					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Aualyzed	Notes
PPE0302-08 (CB-15)		W	ater		Sam	pled: 05/(97/06 12:12			
Diesel Range Organics	NWTPH-Dx	2.21		0.243	mg/l	lx	6050507	05/11/06 13:50	05/13/06 02:26	D-19
Heavy Oil Range Hydrocarbons	17	2.04		0.485	"		n	11	64	D-19
Surrogate(s): 1-Chlorooctadecan	ie		74.5%		50	- 150 %	"		"	

TestAmerica - Portland, OR

Bean L Come

The results in this report upply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 905.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

BTEX per EPA Method 8021B

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-06	(H2O Storage Tank)		Wa	iter		Sam	pled: 05/(7/06 10:50			
Benzene		EPA 8021B	ND		0.500	սջ/i	1x	6050469	05/10/06 11:32	05/10/06 15:57	
Tolucne		11	2.16		0.500	a	**	"		"	
Ethylbenzene		U	ND		0.500	н	ч	#	a	ut-	
Xylenes (total)		st	1.90		1.00	Ü	ıı	**	n	и	
Surrogate(s)	: 4-BFB (PID)			91,2%		70	- 130%	"		"	

TestAmerica - Portland, OR

Brian Cone, Industrial Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Oil and Grease Analysis per EPA Method 1664

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-06	(H2O Storage Tank)		Wate	r		Sample	ed: 05/01	7/06 10:50			
Oil & Grease		EPA 1664	ND		4.76	mg/l	lx	6050508	05/11/06 11:3	0 05/11/06 16:07	

www.testamericainc.com

TestAmerica - Portland, OR

Becan L Come

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Total Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-01	(CB-1)		Wa	ter		Sam	pled: 05/(7/06 10:06			
Chromium		EPA 200.8	0.00817		0.00100	mg/l	lx	6050640	05/14/06 14:50	05/19/06 02:51	
Copper		н	0.0184		0.00200	"	**	, 4	,	05/22/06 12:30	
Lead		,1	0.00820		0.00100	45	a	. "	н	05/19/06 02:51	•
Zine		u	0.239		0,00500	4	"	D	17	N	
PPE0302-02	(CB-5)		Wa	.ter		Sam	pled: 05/0	7/06 10:50			
Chromium		EPA 200.8	0.00141		0,00100	mg/l	lx	6050640	05/14/06 14:50	05/19/06 02:59	
Copper		n	0.0332		0.00200	"	"	н .	41	05/22/06 12:37	
Lead		и .	0.00220		0.00100	n		TF	н	05/19/06 02:59	
Zinc		n	0.693		0.00500	**	,	d	ji	*	
PPE0302-03	(CB-6)		Wa	ter		Sam	pled: 05/0	7/06 10:25			
Chromium		EPA 200.8	0.00185		0.00100	ng/l	lx	6050640	05/14/06 14:50	05/19/06 03:06	
Copper		n	0.0130		0,00200	#	**	"	n	05/22/06 12:45	
Lend		#	0.00593	*****	0,00100	62	41	n	m-	05/19/06 03:06	
Zinc		п	0.128		0.00500	,	n	ır	a	ч	
PPE0302-04	(SD-2)		Wa	tor		Same	nind: 05/6	7/06 09:55			
	(8D-2)										
Chromium		EPA 200.8	0.00207		0.00100	mg∕l "	lx "	6050640	05/14/06 14:50	05/19/06 03:14	
Copper		,	0.0339		0,00200	,	,	"	 	05/22/06 12:53	
Lead		,	0.00226		0.00100	" a	"	"	"	05/19/06 03:14	
Zine		"	0.314		0.00500		"	"	,,		
PPE0302-05	(Outfall-C)		Wa	ter		Sam	pled: 05/0	7/06 09:23			
Chromium		EPA 200.8	ND		0.00100	mg/l	tx	6050640	05/14/06 14:50	05/19/06 03:21	
Copper		n	0.0282		0.00200	*	**	**	n	05/22/06 13:00	
Lead			0.00220		0.00100	n		н	Ħ	05/19/06 03:21	
Zinc		st.	0.329		0,00500	n	"		ır		
PPE0302-06	(H2O Storage Tank)		Wa	ter		Sam	pled: 05/0	7/06 10:50			
Chromium		EPA 200.8	0.00262		0.00100	mg/l	1x	6050640	05/14/06 14:50	05/19/06 03:44	
Copper		"	0.0346		0.00200	n	.,	u	u	05/22/06 13:08	
Lead		п	0.0416		0,00100	15	н	D	n	05/19/06 03:44	
Zinc		н	0.0784		0.00500	41	**	77	**	ч	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brian Cone, Industrial Services Manager

Becan L Come

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001

Thomas Nadermann

Report Created:

05/23/06 17:17

Total Metals per EPA 200 Series Methods

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-07	(CB-17)		Wa	iter		Samj	pled: 05/0	7/06 11:25			
Chromium		EPA 200.8	ND		0,00100	mg/l	ix	6050640	05/14/06 14:50	05/19/06 03:51	
Copper		11	ND		0.00200	•	н	ur .	19	05/22/06 13:15	
Lead		n	ND		0.00100	"	*1	и	16	05/20/06 03:47	
Zinc		н	0.0119	-	0,00500	11	**	#	и	05/19/06 03:51	
PPE0302-08	(CB-15)		Wa	iter		Samj	płed: 05/0	07/06 12:12			
Chromium		EPA 200.8	0.00471		0.00100	mg/l	lx	6050640	05/14/06 14:50	05/19/06 03:59	
Copper		st .	0.0707		0.00200	и	"	r	ų	05/22/06 13:38	
Lead		U	0.00702		0.00100	"	n	#		05/19/06 03:59	
Zinc			0.279		0.00500	н	17	TŘ	U	н	

TestAmerica - Portland, OR

Becan L Come

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica - Portland, OR

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-01 (CB-1)		Wa	ter		Sam	pled: 05/(7/06 10:06			
Acenaphthene	BPA 8270m	ND		0.0980	ug/l	lx	6050420	05/09/06 16:10	05/15/06 15:16	
Acenaphthylene	u	ND		0.0980	. "	14	и	n	n	
Anthracene		ND		0.0980	"	**		n	ie	
Benzo (a) anthracene		ND		0.0980	11	и	ч	11	и	
Вепло (а) ругене	n	ND		0,0980	я	"	n	**	н	
Benzo (b) fluoranthene	*	ND	*****	0.0980	n	*	H	it	u	
Benzo (ghi) perylene	#-	ND		0.0980	**	"	e e	lf.	d	
Benzo (k) fluoranthene	"	ND		0.0980	и	н	If	ŧI	н	
Chrysene	u	ND		0.0980	н	. 44	u	*1	**	
Dibenzo (a,h) anthracene	н	ND		0.196	**	**	u	Đ	*	
Fluoranthene	н	'ND		0.147	19	u	Ð	u	și.	R-03
Fluorene	n	ND		0.0980	17	u		12	u	
Indeno (1,2,3-cd) pyrene	н	ND		0.0980	12		"	,,,		
Naphthalene	н	ND		0.0980	l#	n	**	н	*	
Phenanthrene	п	0.221		0.0980	н	*		b	**	
Pyrene	**	ND		0.0980	**	11	И	**	ч	
Surrogate(s): Fluorene-d10 Pyrene-d10	,•••		76.3% 62.9%			- 125 % - 150 %	n n		n	
Benzo (a) pyrene-d12			60.0%		10	- 125%	"		n	
PPE0302-02 (CB-5)		Wa	ter		Sam	pled: 05/0	7/06 10:50			
Acenaphthene	EPA 8270m	ND		0.0952	ug/l	1 x	6050420	05/09/06 16:10	05/15/06 15:49	
Acenaphthylene	**	ND		0.0952	*		B	••	**	
Anthracene	"	ND		0.0952	*	"	n	"	si .	
Benzo (a) anthracene		ND		0.0952	**	v	Ð	IT	и -	
Вепго (а) ругеле		ND		0.0952	er	U	**	ır	"	
Benzo (b) fluoranthene	h	ND		0.0952	•	"	**		"	
Benzo (ghi) perylene	n	ND	_	0.0952		"	te	n	1*	
Benzo (k) fluoranthene	H	ND		0.0952	n	17	н	#	· n	
Chrysene	R	ND		0.0952		ч	n	**	"	
Dibenzo (a,h) anthracene	q	ND		0.190	#	"	н	st	•	
•	q	ND		0.0952	17		н	u	n	
Fluoranthene		ND		0.143	"	н	19	u	н	R-03
	U	ND								
Fluorene		ND		0.0952	"	,,		"	*	
Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene				0.0952 0.190	n n	" 2x	"	"	" 05/16/06 16:59	R-03
Fluorene Indeno (1,2,3-cd) pyrene Naphthalene		ND				" 2x 1x	u u		" 05/16/06 16:59 05/15/06 15:49	R-03
Fluorene Indeno (1,2,3-cd) pyrene		ND ND		0,190	,		ır	n		R-03

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brian Cone, Industrial Services Manager

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-02	(CB-5)		Wa	ter		Sam	pled: 05/	07/06 10:50			
	Pyrene-d10 Benzo (a) pyrene-d12			71.0% 59.7%			- 150 % - 125 %	lx "		05/15/06 15:49 "	
PPE0302-03	(CB-6)		Wa	ter		Sam	pled: 05/	07/06 10:25			
Acenaphthene		EPA 8270m	ND		0.0962	ug/l	lx	6050420	05/09/06 16:10	05/15/06 16:21	
Acenaphthylene			ND	•••••	0.0962	и ,	4T	er .	si .	P	
Anthracene	•	н	ND		0.0962	п	"		ď	11	
Benzo (a) anthracei	ne	и	ND		0.0962	U	"	11	U	u	
Benzo (a) pyrene		*	ND		0.0962	» ·	. "	,,	*1		
Benzo (b) fluoranth	iene	#f -	ND		0.0962	**	r	. "	***	"	
Benzo (ghi) peryler	ne	п	ND		0.0962	lt .	4	#	"	n	
Benzo (k) fluoranth	iene	п	ND		0.0962	14	at	44	u	# -	
Chrysene		a	ND		0.0962)†	**	"	н	a	
Dibenzo (a,h) anthr	racene	e	ND	-	0.192	н	u		н	а	
Fluoranthene		H	ND	_	0.0962	**		"	19	п	
Fluorene		*	ND		0.0962	10	"	n	42	0 '	
ndeno (1,2,3-cd) p	yrene	#	ND		0.0962	10.	*	47	ď	в	
Naphthalene		ч	ND		0,144	**	**	**	u	11	R-93
Phenanthrene		"	0.201		0.0962	н	"	a	Ħ	u	
Pyrene		*	ND		0.0962	*	"	"	ff	"	
Surrogate(s):	Fluorene-d10			73.3%		25	- 125 %	"	W. W. W. W.	n	
	Pyrene-d10			64.2%	•	23	- 150%	n.		"	
	Benzo (a) pyrene-d12			58.3%		10	125 %	"		n	
PPE0302-04	(SD-2)		Wa	ter		Sam	pled: 05/	07/06 09:55			
Acenaphthene		EPA 8270m	ND		0.0962	ug/l	1x	6050420	05/09/06 16:10	05/15/06 16:53	
Acenaphthylene		**	ND		0.192	tr	2x	ш	u	05/16/06 17:31	R-03
Anthracene			ND		0.0962	ø	1x	"	11	05/15/06 16:53	
Benzo (a) anthracer	ne	н	ND		0.0962	"	h	н	**	μ	
Benzo (a) pyrene		"	ND		0.0962	"	,	*	u	11	
Benzo (b) fluoranth	tene	**	ND		0.0962	и	et	11	u	н	
Benzo (ghi) peryler	1e		ND		0.0962	н	11	łf	n	q	
Benzo (k) fluoranth	ene		ND		0.0962	н	v		n		
Chrysene		"	ND		0.0962	19	·		**	•	
Dibenzo (a,h) anthr	racene	¥	ND	_	0,192	12	и	Ħ	tt	и	
Fluoranthene		59	ND		0.0962	ď	Ħ	fr .	tr	н	
Fluorene		4	ND	_	0.192	"	2x	"	IJ	05/16/06 17:31	R-03
Indeno (1,2,3-cd) p			ND		0.0962	,,	lx		,,	05/15/06 16:53	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Beam L Come

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 905.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica - Portland, OR

Analyte	Metho							Prepared		Notes
PPE0302-04 (SD-2)	<u> </u>	Water		Sam	pled: 05/	07/06 09:55			
Naphthalene	EPA 8270m	, ND		0.192	ug/l	2x	6050420	05/09/06 16:10	05/16/06 17:31	R-03
Phenanthrene	n	ND	_	0.144		1x	"	н	05/15/06 16:53	R-03
Pyrene	n	ND		0.0962	н	u	*	n	н	
Surrogate(s): Fluo	rene-d10		79.2%		25	- 125 %	"		"	-
Pyre	me-d10		61.7%		23	- 150%	u		u	
Benz	to (a) pyrene-d12		55.0%	-	10	- 125 %	п		"	
PPE0302-05 (Outf	all-C)	1	Water		Sam	pled: 05/6	07/06 09:23			
Acenaphthene .	EPA 8270m	ND		0.0952	ug/l	ix	6050420	05/09/06 16:10	05/16/06 14:20	
Acenaphthylene		ND		0.0952	"	"	ĮT	**	"	
Anthracene		ND		0.0952	п	н	"	**	ri .	
Benzo (a) anthracene	*	ND		0.0952	er:	49		"	н	
Benzo (a) pyrene	11	ND		0,0952	н	39	"	It	н .	
Benzo (b) fluoranthene	и	ND		0.0952	п	se	. "	H.	N	
Benzo (ghi) perylene	d	ND		0.0952	,,	47	17	н	T\$	
Benzo (k) fluoranthene	n	ND		0.0952	,,		и	**	ri	
Chrysene	п	ND		0.0952	н		u	18	u	
Dibenzo (a,h) anthracene	ī	ND	_	0.190	**	•	U	w	U	
Fluoranthene	,	ND		0.0952	st	17	"	u	"	
Fluorene	Ţi	ND		0.0952	n	u	11	u	"	
Indeno (1,2,3-cd) pyrene	ч	ND	·	0.0952	U	н	#	10	ъ	
Naphthalene	7	ND		0.0952	n	-	н	**		
Phenanthrene	и	ND		0.0952	**	•	u·	•	н	
Ругеле	в	ND		0,0952	**	79	n	**	μ	
Surrogate(s): Fluo	rene-d10		72.3%		25	- 125 %	ri .		"	
Pyre	ne-d10		75.6%		23	- 150%	n		"	
Benz	o (a) pyrene-d12		67.2%		10	- 125 %	н		"	
PPE0302-06 (H2O	Storage Tank)	,	Vater		Sam	pled: 05/0	07/06 10:50			
Acenaphthene	EPA 8270m	ND		0.189	ug/l	2x	6050420	05/09/06 16:10	05/18/06 20:39	R-03
Acenaphthylene	TR.	ND		0.189	a	1*	"	и	н	R-03
Anthracene	п	ND		0.0943	a	1x	47	n	05/15/06 17:58	
Benzo (a) anthracene	*	ND		0.0943	v		•	11	"	
Велго (а) рутеле	•	ND		0.0943	11	n	и	**	н	
Benzo (b) fluoranthene	7	ND		0.0943	н	n	n	n	"	
Benzo (ghi) perylene	ø	ND	****	0.0943	19	#	н	AT .	n	
Benzo (k) fluoranthene	u	ND		0.0943	***	4	н	и	n	
Chrysene	Ht.	ND		0.0943	_			н		

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirely.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dij	Batch	Prepared	Analyzed	Note
PPE0302-06 (H2O Storage Tank)		Wa	iter		Samp	oled: 05/	07/06 10:50		-	
Dibenzo (a,h) anthra	cene	BPA 8270m	ND		0.189	ug/i	lx	6050420	05/09/06 16:10	05/15/06 17:58	
Fluoranthene		D	ND		0.0943	#	17	п	1)		
Fluorene		P	ND		0.189	"	2x	n	π	05/18/06 20:39	R-03
Indeno (1,2,3-cd) py	rene	er .	ND		0.0943	н	1 x	н	ıç	05/15/06 17:58	
Naphthalene		4	ND		0,189	"	2x	10	н	05/18/06 20:39	R-03
Phenanthrene		•	ND		0.0943	"	1x	u	"	05/15/06 17:58	
Pyrene		н	ND		0.0943	18	"	a	+1	ø	
Surrogate(s):	Fluorene-d10			78.0%		25 -	- 125 %	2x		05/18/06 20:39	
	Pyrene-d10			53.4%	,		- 150%	1x		05/15/06 17:58	
	Benzo (a) pyrene-d12			51.7%		10	- 125 %	<i>11</i>		n	
PPE0302-07 (CB-17)		Wa	iter		Samp	oled: 05/	07/06 11:25			
Аселарhthene		EPA 8270m	ND		0.0971	ug/l	1x	6050420	05/09/06 16:10	05/13/06 00:26	
Acenaphthylene		17	ND		0.0971		10	47	и	Hr.	
Anthracene		и ·	ND		0.0971	н	**	11	н		
Benzo (a) anthracen	e '	n .	ND		0.0971	"	**	U	н	y	
Benzo (a) pyrene		н	ND	_	0.0971	st	**	4	19	u u	
Benzo (b) fluoranthe	ene	n	ND		0.0971	4		n	45	R	
Benzo (ghi) perylen	e	17	ND		0.0971		ъ.	. "		H*	
Benzo (k) fluoranthe	ene	ır	ND		0.0971	"	"	H	n	ч	
Chrysene		U	ND		0.0971	#		11	**	я	
Dibenzo (a,h) anthra	сепе	и	ND	****	0.194	"		. п	17	n	
Fluoranthene		H	ND		0.0971		п		и -	н .	
Fluorene		W .	ND		0.0971	н	r	40.	н		
Indeno (1,2,3-cd) py	rene	и	ND		0.0971	n	a	u	**	и	
Naphthalene		н .	ND		0.0971	10	a	D	10	и	
Phenanthrene		n	ND		0.0971	"		Ħ	u	*	
Ругепе		R	ND		0.0971	n	**	u	"	14	
Surrogate(s):	Fluorene-d10			74.9%	_	25	- 125 %	"		,,	
	Pyrene-d10			72.8%		23	- 150 %	"		"	
	Benzo (a) pyrene-d12			56.0%		10	- 125 %	n		n	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street Vancouver, WA 98685 Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-08 (C)	B-15)		Wa	iter		Samp	pled: 05/0	7/06 12:12			
Acenaphthene		EPA 8270m	ND		0.0980	ug/l	1×	6050420	05/09/06 16:10	05/15/06 18:30	
Acenaphthylene			ND		0.0980		"	н	h	n	
Anthracene		P	ND		0.0980	ır	н	*	e	n	
Benzo (a) anthracene		в	ND		0.0980			"	o	v	
Benzo (a) pyrene		*	ND		0.0980	#		n	**	ч	
Benzo (b) fluoranthene	:	**	ND		0.0980	o o	*	н	н	u	
Benzo (ghi) perylene			ND		0.0980	er	n	"	n	н	
Benzo (k) fluoranthene	:		ND		0.0980	"	•	"	п	н	
Chrysene			ND		0.0980	"	ur	,	*1	н	
Dibenzo (a,h) anthraces	ne	u	ND		0.196		4	# .	**	*	
Fluoranthene		n	ND		0.0980	н	p.	ti.	16	tr.	
Fluorene		. ,	ND	****	0.196			u	. 0	ч	R-03
Indeno (1,2,3-cd) pyrer	ne.	*	ND		0.0980	*	"	u		**	
Naphthalene		n,	ND	*****	0.147	a	"		n		R-03
Phenanthrene		R	ND		0.147	8	#	,,	,,	11	R-03
Pyrene		н	ND		0.0980	ч	"	. #1	11	r H	
Surrogate(s): F	luorene-d10			80.4%		25	- 125 %	4		ıt	
0 , ,	vrene-d10			69.4%			- 123 % - 150 %	u		n	
· ·	lenzo (a) pyrene-d12			60.4%			- 125%	*		a a	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street

Vancouver, WA 98685

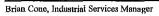
Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Conventional Chemistry Parameters per APHA/EPA Methods


TestAmerica - Portland, OR

Annlyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-01	(CB-1)		Wa	iter		Sam	pled: 05/0	7/06 10:06			
Total Suspended	I Solids	EPA 160.2	37.0		10.0	mg/l	1x	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-02	(CB-5)		Wa	iter		Sam	pled: 05/0	7/06 10:50			
Total Suspended	Solids	EPA 160.2	ND		10,0	mg/l	1x	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-03	(CB-6)		Wa	iter		Sam	pled: 05/0	7/06 10:25			
Total Suspender	l Solids	EPA 160.2	12.0		10.0	mg/l	1x	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-04	(SD-2)		Wa	iter	_	Sam	pled: 95/0	7/06 09:55			
Total Suspended	i Solids	EPA 160.2	20.0		10.0	mg/l	lx	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-05	(Outfall-C)		Wa	iter		Sam	pled: 05/0	7/06 09:23			
Total Suspended	Solids	EPA 160.2	ND		10.0	mg/l	lx	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-06	(H2O Storage Tank)		Wa	iter		Sam	pled: 05/0	7/06 10:50			
Total Suspended	i Solids	EPA 160.2	15.0		10.0	mg/l	lx	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-07	(CB-17)		Wa	iter		Sam	pled: 05/0	7/06 11:25			
Total Suspended	Solids	EPA 160.2	ND		10.0	mg/l	1x	6050516	05/11/06 09:15	05/11/06 15:35	
PPE0302-08	(CB-15)		Wa	ıter		Sam	pled: 05/0	7/06 12:12		ī	
Total Suspender	1 Solids	BPA 160.2	42.0		10.0	mg/l	İx	6050516	05/11/06 09:15	05/11/06 15:35	

TestAmerica - Portland, OR

Beam L Core

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

Conventional Chemistry Parameters by APHA/EPA Methods

TestAmerica - Seattle, WA

		1	CSIMILOTIC	u - Stall	10, 11 A					
Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PPE0302-01 (CB-1)		Wa	ter		Samp	pled: 05/0	07/06 10:06			
Oil & Grease (HEM)	EPA 1664A	ND		4.76	mg/l	lx ·	6B10050	05/10/06 14:37	05/11/06 21:30	
PPE0302-02 (CB-5)		Wa	ter		Samı	pled: 05/0	07/06 10:50		-	
Oil & Grease (HEM)	EPA 1664A	ND		4.76	mg/l	lx	6E10050	05/10/06 14:37	05/11/06 21:30	
PPE0302-03 (CB-6)		Wa	ter		Samı	pled: 05/0	07/06 10:25			
Oil & Grease (HEM)	EPA 1664A	ND		4.76	mg/l	lx	6E10050	05/10/06 14:37	05/11/06 21:30	
PPE0302-04 (SD-2)		Wa	ter		Samp	pled: 05/0	7/06 09:55	,		
Oil & Grease (HEM)	EPA 1664A	ND		4.76	mg/l	lx	6E10050	05/10/06 14:37	05/11/06 21:30	
PPE0302-05 (Outfall-C)		Wa	ter		Samp	pled: 05/(7/06 09:23			
Oil & Grease (HEM)	EPA 1664A	ND		4,85	mg/l	lx	6E10051	05/10/06 14:39	05/11/06 21:32	
PPE0302-07 (CB-17)		Wa	ter		Samţ	pled: 05/0	07/06 11:25			
Oil & Grease (HEM)	EPA 1664A	ND		4.81	mg/l	lx	6B10051	05/10/06 14:39	05/11/06 21:32	
PPE0302-08 (CB-15)		Water Sampled: 05/07/0)7/06 12:12				
Oil & Grease (HEM)	BPA 1664A	ND		4.76	mg/l	Ix	6E10051	05/10/06 14:39	05/11/06 21:32	
	-									

TestAmerica - Portland, OR

Becan L Come

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street Vancouver, WA 98685 Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Diesel and Heavy Range Hydrocarbons per NWTPH-Dx Method - Laboratory Quality Control Results

					Portland, O				· .	<u> </u>				-
QC Batch: 6050507	Water 1	Preparation	Method: E	PA 3510	Fuels									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Resuit	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6050507-BLK1)								Ext	racted:	05/11/06 13	:50			
Diesel Range Organics	NWTPH-Dx	ND		0.250	mg/l	1 x		••					05/15/06 20:50	
Heavy Oil Range Hydrocarbons	**	ND		0.500	n·	"		**			~*			
Surrogate(s): 1-Chlorooctadecane		Recovery:	94.2%	Li	nits: 50-150%	"							05/15/06 20:50	
LCS (6050507-BS1)								Ext	racted:	05/11/06 13	:59			
Diesel Range Organics	NWTPH-Dx	2.19		0.250	mg/l	1x		2.51	87.3%	(50-150)			05/15/06 20:15	
Heavy Oil Range Hydrocarbons	rr	1.58		0.500	"	17		1,53	.103%	"				
Surrogate(s): 1-Chlorooctadecane		Recovery:	77.3%	Li	nits: 50-150%								05/15/06 20:15	
LCS Dup_(6050507-BSD1)								Ext	racted:	05/11/06 13	:50			
Diesel Range Organics	NWTPH-Dx	2.07		0.250	mg/I	1 x		2.51	82.5%	(50-150)	5.63%	(50)	05/15/06 19:40	
Heavy Oil Range Hydrocarbons	U	1.58		0.500	п	,		1.53	103%	11	0.00%	. *	v	
Surrogate(s): 1-Chlorooctadecane		Recovery:	74.1%	Τ:	nits: 50-150%	,,,							05/15/06 19:40	

TestAmerica - Portland, OR

Bean L Come Brian Cone, Industrial Services Manager The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

www.testamericainc.com

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created: 05/23/06 17:17

BTEX per EPA Method 8021B - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6050469	Water l	reparation	Method: E	PA 5030B										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6050469-BLK1)								Ext	acted:	05/10/06 11	:31			
Benzene	EPA 8021B	ND		0.500	ug/i	lx	~~				-		05/10/06 12:47	
Toluene	#	ND		0.500	"	w	**				-		u	
Ethylbenzene	#	ND	`	0.500	P	· r	••						n	
Xylenes (total)	**	ND	***	1.00	41	н					••	**	n	
Surrogate(s): 4-BFB (PID)		Recovery:	101%	Lin	nits: 70-130%	6 "							05/10/06 12:47	
LCS (6050469-BS1)	_							Extr	acted:	05/10/06 11	:31			
Велгене	EPA 8021B	18.6	•••	0.500	ug/l	lx		20,0	93.0%	(70-130)			05/10/06 13:19	
Toluene	u	19.5	***	0.500	a .	n		n	97.5%	(76-129)	••	••	ø	
Ethylbenzene	U	20.2		0.500	и .	47 :	**	н	101%	(82-130)			ø	
Xylenes (total)	w .	60.5		1.00	p.	tī.		60.0	101%	(76-130)			tr	
Surrogate(s): 4-BFB (PID)		Recovery;	103%	Lin	iits: 70-130%	á "							05/10/06 13:19	
Matrix Spike (6050469-MS1)				QC Source:	PPE0270-0	1		Extr	acted:	05/10/06 11	:31			
Benzene	EPA 8021B	193		5,00	ug/l	10x	ND	200	96.5%	(65-144)			05/10/06 14:53	
Toluene	te.	200	•••	5.00	**	н	ND	n·	100%	(68-139)			п	
Ethylbenzene	44	211	***	5.00	#	"	5.15	,	103%	(69-144)	-	**	"	
Xylenes (total)	h	619	400	10.0		"	ND	600	103%	(60-144)		••	н `	
Surrogate(s): 4-BFB (PID)		Recovery:	103%	Lin	nits: 70-130%	6 Ix							05/10/06 14:53	
Matrix Spike Dup (6050469-MS	D1)			QC Source:	PPE0270-0	1		Extr	acted:	05/10/06 11	:31			
Benzene	EPA 8021B	199		5.00	ug/l	10x	ND	200	99.5%	(65-144)	3.06%	(20)	05/10/06 15:25	
Toluene	**	207		5.00	*	"	ND ·	n	104%	(68-139)	3.44%		а	
Ethylbenzene	4	217		5.00			5,15	и	106%	(69-144)	2.80%		d	
Xylenes (total)	Ti .	637		10.0	9 7	n	ND	600	106%	(60-144)	2.87%	n	ø	
Surrogate(s): 4-BFB (PID)		Recovery:	97.6%	Lin	nits: 70-130%	i lx							05/10/06 15:25	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S,W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Oil and Grease Analysis per EPA Method 1664 - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6950508	Water P	reparation M	lethod: Od	&G prep	CE			-						
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blauk (6050508-BLK1)								Ext	racted:	05/11/06 11	:30			
Oil & Grease	EPA 1664	ND		5.00	mg/l	1x				-	~*		05/11/06 16:07	
LCS (6050508-BS1)								Ext	racted:	05/11/06 11	;30			
Oil & Grease	EPA 1664	74.1	***		mg/l	lx		80.0	92,6%	(79-114)			05/11/06 16:07	-

TestAmerica - Portland, OR

Becan L Come

The results in this report apply to the samples analyzed in accordance with the choin of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street

Vancouver, WA 98685

Project Name:

Sulzer Pump

Thomas Nadermann

Project Number: . Project Manager: ST-SP-001

Report Created: 05/23/06 17:17

Total Metals per EPA 200 Series Methods - Laboratory Quality Control Results

TestAmerica - Portland, OR

QC Batch: 6050640	Water I	reparation M	ethod: E	PA 200/30	05									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6050640-BLK1)								Extr	acted:	05/14/06 14	:50			
Chromium	EPA 200,8	ND		0.00100	mg/l	lx		••	+-	••		-	05/19/06 00:21	
Copper	,	ND		0.00200	n	n		••	••				05/20/06 01:16	
Lead	"	ND -		0.00100	ıt	*.			••				05/19/06 00:21	
Zinc	н	ND		0.00500	н	**				-		-	μ	•
LCS (6050640-BS1)								Extr	acted:	05/14/06 14	:50			
Chromium	EPA 200.8	0,115		0.00100	mg/l	ix		0.100	115%	(85-115)			05/19/06 00:43	
Copper	tr .	0.0949	***	0.00200	"	a		,,	94.9%	u			05/20/06 01:24	
Lead	16	0.105	***	0.00100	"	a		"	105%				05/19/06 00:43	
Zine	u .	0.110		0,00500	u	U	••	н	110%	n	-		и	
Duplicate (6050640-DUP1)				QC Source:	PPE0182-0	1		Extra	acted:	05/14/06 14	:50			
Chromium	EPA 200.8	ND		0,00100	mg/l	lx	ND				0.2609	6 (20)	05/19/06 01:13	
Copper	U	0.0421		0,00200	11	**	0.0435			-	3.27%	6 "	05/20/06 01:54	·
Lead	e.	0.00117		0,00100	n	G	0.00112	-			4.37%	, "	05/19/06 01:13	
Zinc	31	0,384	; 	0.00500	n	"	0.386				0.5199	6 "	ff*	
Matrix Spike (6050640-MS1)				QC Source:	PPE0182-0	1		Extr	acted;	05/14/06 14	:50			
Chromium	EPA 200.8	0.120		0.00100	mg/l	1x	0.000769	0.100	119%	(75-125)			05/19/06 01:21	
Copper	11	0.139		0.00200	н.	н	0.0435	p	95.5%	"			05/20/06 02:02	
Lead	и .	0.109		0.00100	п	и	0.00112	H	108%	н			05/19/06 01:21	
Zinc	u	0.510		0.00500	ú	"	0.386	н	124%	(70-130)			D	
Matrix Spike (6050640-MS2)	·			QC Source:	PPE0296-0	2		Extra	acted:	05/14/06 14	:50			
Chromium	EPA 200,8	0.121	***	0.00100	mg/l	lx	0.00329	0.100	118%	(75-125)			05/19/06 02:44	
Соррег	jı	0.110	***	0.00200	p	**	0.00976	и	100%	a			05/22/06 12:22	
Lead	7	0.105	***	0.00100	ø	e	0.00100	H	104%	u			05/19/06 02:44	
Zinc	,,	0.138		0.00500	"	11	0.0317	и	106%	(70-130)			и	

TestAmerica - Portland, OR

Becan L Come

The results in this report opply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street Vancouver, WA 98685

Project Number: Project Manager: ST-SP-001 Thomas Nadermann Report Created:

05/23/06 17:17

Polynuclear Aromatic Compounds per EPA 8270M-SIM - Laboratory Quality Control Results

TestAmerica - Portland, OR

Analyte		Method	Result	MDL*	MRL	Units	Dil	Source	Spike	0/.	(Limits)	% RPD	(Limits)	Analyzed	Note
· · · · · · · · · · · · · · · · · · ·								Result	Amt	REC		RPD	(
Blank (605042	0-BLK1)								Ext	racted:	05/09/06 16	:10			
Acenaphthene		EPA 8270m	ND		0.100	ug/i	łx						1	05/11/06 16:50	
Acenaphthylene		If	ND		0.100	b.	"		••				-	u	
Anthracene		"	ND		0.100	**	"		••		-			U	
Benzo (a) anthracene	;	н	ND		0.100	17	Ħ							n	
Венzо (а) ругеве		н	ND		0.100	II.	**		-					n	
Benzo (b) fluoranthe	ne	,	ND		0.100	11	4.			••				10	
Benzo (ghi) perylene	,	7*	ND		0.100	н	U		••						
Benzo (k) fluorauthe	пе	đ	ND		0.100	n		-						n	
Chrysene)r	ND		0.100	H-	n-							"	
Dibenzo (a,h) anthrac	cene	11	ND		0,200	Ħ	n							н	
Fluoranthene		ø	ND	***	0.100	17	π				-			ю	
Fluorene		*	ND		0.100	**	"	**						10	
Indeno (1,2,3-cd) pyr	rene	"	ND		0.100	U	"		_		-			17	
Naphthalene		R	ND		0.100	"	н	***	_					u	
Phenanthrene		-tr	ND		0.100	ut.	11		••					n	
Рутепе		\$1	ND		0.100	Ħ	н						·	II.	
Surrogate(s):	Fluorene-d10		Recovery:	75.2%	Lin	nits: 25-125%	"							05/11/06 16:50	
	Pyrene-d10			74.0%		23-150%	u							"	
	Benzo (a) pyrene-d12			81.2%		10-125%								"	
LCS (6050420	PC1\								Red	ractade	05/09/06 16	•1B			
Acenaphthene	-DS1)	EPA 8270m	1,94		0,100	ug/l	lx		2.50	77.6%	(26-135)			05/11/06 17:20	
Вепло (а) ругепе		"	2.26		0.100		"		**	90.4%	(38-137)			4	
Pyrene			2.06		0.100	9	а				(33-133)	-		u	
	W. No					25 12501				023470	(55-155)			ACC 100 17 00	
Surrogate(s):	Fluorene-d10 Pyrene-d10		Recovery:	72.4% 72.8%	Lii	nits: 25-125% 23-150%								05/11/06 17:20 "	
	Benzo (a) pyrene-d12			72.6% 80.0%		10-125%								n	
	201120 (ay p)			20,070											
LCS Dup (605	0420-BSD1)								Ext	racted:	05/09/06 16	:10			
Acenaphthene		EPA 8270m	2.10		0.100	ug/i	lx		2.50	84.0%	(26-135)	7.92%	(60)	05/11/06 17:50	
Benzo (a) pyrene		IF.	2.48	***	0.100	,,	s)		p	99.2%	(38-137)	9.28%	, "	H	
Ругеле		44	2.25	***	0.100	**	10		*	90.0%	(33-133)	8,82%	5 "	11	
Surrogate(s):	Fluorene-d10		Recovery:	79.6%	Lii	nits: 25-125%								05/11/06 17:50	
e	Pyrene-d10			78.0%	24,	23-150%	a							"	
	Benzo (a) pyrene-d12			86.8%		10-125%	#							н	

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brian Cone, Industrial Services Manager

Becom L Come

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax; (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager:

ST-SP-001 Thomas Nadermann

ND

Report Created:

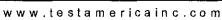
05/23/06 17:17

Con	ventional Chen	nistry Paran		APHA/E America -			Laborat	ory Q	uality	Control	Resu	lts		
QC Batch: 6050516	Water P	reparation M	lethod: G	eneral Pre	paration									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits) Analyzed	Notes
Blank (6050516-BLK1)								Ext	racted:	05/11/06 09	:15			
Total Suspended Solids	EPA 160.2	ND	***	10.0	mg/l	1x		••					05/11/06 15:35	
Blank (6050516-BLK2)								Ext	racted:	05/11/06 09	:15			
Total Suspended Solids	EPA 160,2	ND	***	10.0	mg/l	lx		••					05/11/06 15:35	
LCS (6050516-BS1)								Ext	racted:	05/11/06 09	:15			
Total Suspended Solids	EPA 160.2	48.0	***	10.0	mg/l	1x	-	50.0	96.0%	(80-120)			05/11/06 15:35	
LCS (6050516-BS2)								Ext	racted:	05/11/06 09	:15			
Total Suspended Solids	EPA 160.2	49.0		10,0	mg/l	ix		50.0	98.0%	(80-120)			05/11/06 15:35	
Duplicate (6050516-DUP1)				QC Source:	PPE0302-)2		Ext	racted:	05/11/66 09	:15			
Total Suspended Solids	EPA 160.2	ND		10,0	mg/l	1x	ND			~*	0.00%	(20)	05/11/06 15:35	-
Duplicate (6050516-DUP2)		•		OC Source:	PPE0302-)5		Ext	racted:	05/11/06 09	:15			

10.0

ND

EPA 160.2


TestAmerica - Portland, OR

Total Suspended Solids

Becan L Come

Brian Cone, Industrial Services Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

05/11/06 15:35

NR (20)

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

317 NE 144th Street Vancouver, WA 98685 Project Name:

Sulzer Pump

Project Number: Project Manager: ST-SP-001 Thomas Nadermann

4.76

Report Created:

05/23/06 17:17

Conv	ventional Chem	aistry Paran	. •	APHA/E) America -			Laborato	ory Qua	ility (Control	Resul	ts		
QC Batch: 6E10050	Water P	reparation M	ethod: G	ravimetri	c (hexane)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E10050-BLK1)								Extra	cted:	05/10/06 14 :	:37			
Oil & Grease (HEM)	EPA 1664A	ND		5.00	mg/l	1x		••					05/11/06 21:30	
LCS (6E10050-BS1)								Extra	cted:	05/10/06 14	:37		_	
Oil & Grease (HEM)	EPA 1664A	39.5		5.00	mg/l	1x		40.0	98.8%	(78-114)			05/11/06 21:30	
LCS Dup (6E10050-BSD1)								Extra	cted:	05/10/06 14:	:37			
Oii & Grease (HEM)	EPA 1664A	39.0		5.00	mg/l	lx		40.0	97.5%	(78-114)	1.27%	(18)	05/11/06 21:30	
QC Batch: 6E10051	Water P	reparation M	ethod: G	ravimetri	c (hexane)									
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (6E10051-BLK1)								Extra	cted:	05/10/06 14	:39			
			•	5.00	mg/l	1x							05/11/06 21:32	
Oil & Grease (HEM)	EPA 1664A	ND		5.00	mg/:	1.								
Oil & Grease (HEM) LCS (6E10051-BS1)	EPA 1664A	ND		5.00	mg.	1.		Extra	cted:	05/10/06 14	:39			
LCS (6E10051-BS1)	EPA 1664A	ND 38.2		5.00	mg/i	1x			_	05/10/06 14 (78-114)	:39		05/11/06 21:32	·
, ,			,	5.00		1x			95.5%				05/11/06 21:32	· ·

4.85

mg/l

TestAmerica - Portland, OR

Oil & Grease (HEM)

BPA 1664A

40.5

Becan L Come

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

38.8 92.1% (78-114) 2.44% (18) 05/11/06 21:32

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

Sterling Technologies, LLC

Project Name:

Sulzer Pump

317 NE 144th Street Vancouver, WA 98685 Project Number: Project Manager: ST-SP-001

Report Created:

Thomas Nadermann

05/23/06 17:17

Notes and Definitions

Report Specific Notes:

D-03

- The hydrocarbon concentration result in this sample is partially due to an individual peak(s) eluting in the diesel/motor oil carbon range.

D-19

Detected hydrocarbons do not have pattern and range consistent with typical petroleum products and may be due to biogenic

interferenc

R-03 - The reporting limit for this analyte was raised due to matrix interference.

Laboratory Reporting Conventions:

DET

Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND

Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA

Not Reported / Not Available

dry

Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD

RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL*

METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting Limits Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

ŀ

Electronic Signature Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy.
 Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.
 Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica - Portland, OR

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brian Cone, Industrial Services Manager

Page 2

Please noid PAH V.10 0.10 FAX 382 7588 FAX 563 9210 13X 420 92101 FAX 924 9290 1:4X 906 9210 DATE & enoleun Hydaxaabon Analyses / TIME: TORRA ROUGH REQUES! Olganic & Inoganic Analyses LOCATION / COMMENTS DATE TIME TENP: In Businese Bays . 503 906 9200 541 383 9310 1X17 561 921XI Stry 924 92(K) 425 430-92(4) Ollier Spails: COH # OF Ø V) 10 0 TIRAL 1) 20) Horth Creek Pkwy M Suite 400, Bothell, WA 98011-824-6 11922 E 1st Ave, Spokane, WA 99200-5402 2013.2 Furplice Ave, Ste F1, Bend, OR 97701-531.2 JINN W. International Alayout Rd Ste A10, Anchounge, AK 99502-1119 Wat Onler B 9405 SW Minbus Ave, Beavengo, OR 97008-7145 (W, S, O) MATRIX 3 Deligion 755 RECEIVED BY? RECEIVED BY: TIME (CO SAN PRINT HAME: PRICT HAME: X376 REQUESTINO ANALYSES PRESERVATIVE 47 à DATE 5: 7- CL CHAIN OF CUSTODY REPORT PO MUMBER: HVGFFTD 14818: MINISTER SHELLING TELLINGGERS STONE 7 291 2 2091 FIRM: STECKLING Promi 115 "H2O Storag Tank S-7-06/10:SD 5 7-01/2012 S 7-cm/9:55 5.7-02/12:12 S-1-00/1125 TIM MERCY 57-0-15 5.7-00/10150 57-01/20-LS FIRE DALEZINE SAMPLING VEZZami PRINT HANDE CHONGY 1 VEZZOWI PROJECT HANIE SALIZE, PLYMO district) SARITY ED BY: (! WE WE WE WED MEL FASHILING (MENY 124 6.00 Scholfall C DIENTIFICATION WOUNTOWN, REMARKS: CTUENT SAMPLE PROJECT PUNIBER: 1 CB-15 RELEASED DY: 200 PRIBLINAME CB-1 28.5 1SD 2 CB. 17 MPPRESS:

Ē

Non-Conformances	?							
Circle Y or	N							
(If Y, see other side)								

TEST AMERICA SAMPLE RECEIPT CHECKLIST

(A):____

Received By: (applies to temp at receipt) Date: 5 30 Initials: 5/1	Logged-in By: Date: Initials:	Unpacked/Labeled By Date: 500 8 Initials: 500	Work Order No. PC0307 Client: Stell Colors Project: Culson Pun
Container Type: Cooler Box None/Other	Ship. Contained On Bottles		Packing Material Bubble Bags Styrofoam Foam Packs X None/Other Other
Refrigerant: Gel Ice Pack Loose Ice None/Other Cooler Temperature (IF	T.	None ass) (Frozen filters, Ted	Received Via: Bill# — Fed Ex Client — UPS NCA Courier — DHL Mid Valley — Senvoy TDP — GS Other Lars and aqueous Metals exempt)
Temperature Blank? Sample Containers: Intact? Provided by NCA? Correct Type? #Containers match CO IDs/time/date match CO	Y or N Y or N Y or N	Client QAPP Pre Adequate Volum (for tests requested)	e? Y or N or NA eadspace? Y or N or NA
Hold Times in hold? PROJECT MANAGEM Is the Chain of Custody Comments, Problems	For N		Y or N If N, circle the items that were incomplete
Total access set up? Has client been contacted re PM Initials.		Time:	Y or N Y or N If Y,/

					•	
						1
	·					
		·				
					·	:
						:
						1
	•					1
		•				; !
		•				
						٠
						:
	-					
		·				
						:
					•	
						i :
				•		
						i
			•			1
•						:

Acronyms

ACRONYMS

AWQC Ambient Water Quality Criteria

BTEX benzene, toluene, ethylbenzene, and total xylenes

COI contaminant of interest CSM Conceptual Site Model

DEQ Oregon Department of Environmental Quality

ECSI Environmental Cleanup Site Information
EPA U.S. Environmental Protection Agency

MCL maximum contaminant level mg/Kg milligrams per kilogram mg/L milligrams per liter
NA not applicable

PAH polynuclear aromatic hydrocarbon

PCB polychlorinated biphenyl
PRG preliminary remediation goal
SCE Source Control Evaluation

SCP Source Control Plan

SWPCP Storm Water Pollution Control Plan

TCLP Toxicity Characteristic Leaching Procedure

TSS total suspended solids

µg/Kg micrograms per kilogram

µg/L micrograms per liter

XPA Expanded Preliminary Assessment